ABOUT THE JOURNAL

Journal of Economics, Finance and Accounting (JEFA) is a scientific, academic, peer-reviewed, quarterly and open-access online journal. The journal publishes four issues a year. The issuing months are March, June, September and December. The publication languages of the Journal are English and Turkish. JEFA aims to provide a research source for all practitioners, policy makers, professionals and researchers working in the area of economics, finance, accounting and auditing. The editor in chief of JEFA invites all manuscripts that cover theoretical and/or applied researches on topics related to the interest areas of the Journal.

Editor-in-Chief
Prof. Suat Teker

Editorial Assistant
Inan Tunc

JEFA is currently indexed by

Ethics Policy
JEFA applies the standards of Committee on Publication Ethics (COPE). JEFA is committed to the academic community ensuring ethics and quality of manuscripts in publications. Plagiarism is strictly forbidden and the manuscripts found to be plagiarised will not be accepted or if published will be removed from the publication.

Author Guidelines
All manuscripts must use the journal format for submissions. Visit www.pressacademia.org/journals/jefa/guidelines for details.

CALL FOR PAPERS
The next issue of JEFA will be published in December, 2020.
Submit manuscripts to jefa@pressacademia.org or http://www.pressacademia.org/submit-manuscript/
Web: www.pressacademia.org/journals/jefa
EDITORIAL BOARD
Sudi Apak, Beykent University, Turkey
Thomas Coe, Quinnipiac University, United States
Seda Durguner, University of South California, United States
Cumhur Ekinci, Istanbul Technical University, Turkey
Laure Elder, Saint Mary's College, University of Notre Dame, United States
Metin Erkan, Bosphorus University, Turkey
Ihsan Ersan, Istanbul University, Turkey
Umit Erol, Bahcesehir University, Turkey
Saygin Eyupgiller, Isik University, Turkey
Abrar Fitwi, Saint Mary's College, University of Notre Dame, Turkey
Rihab Gidara, University of Sfax, Tunisia
Kabir Hassan, University of New Orleans, United States
Ihsan Isik, Rowan University, United States
Halil Kiymaz, Rollins University, United States
Coskun Kucukozen, Economics University of Izmir, Turkey
Mervyn Lewis, University of South Australia, Australia
Bento Lobo, University of Tennessee, United States
Ahmed Ali Mohammed, Qatar University, Qatar
Mehmet Sukru Tekbas, Turkish-German University, Turkey
Oktay Tas, Istanbul Technical University, Turkey
Mustafa Turhan, Okan University
Lina Hani Ward, Applied Science University of Jordan, Jordan
Hadeel Yaseen, Private Applied Science University, Jordan
<table>
<thead>
<tr>
<th>Title and Author/s</th>
<th>Page</th>
</tr>
</thead>
</table>
| 1. An analysis of macroeconomic performances of European countries by the grey relational analysis method
Hakan Altin | 198-213 |
| DOI: 10.17261/Pressacademia.2020.1288 | |
| JEFA- V.7-ISS.3-2020(1)-p.198-213 | |
| 2. Bank credits and rent-price relation: an interpretation on the roles of credits in economy and time series analysis with structural break
Banka kredileri ve kira-fiyat ilişkisi: kredilerin ekonomideki rolleri üzerine bir yorum ve yapısal kılnım li zaman serileri analizi
Esat Dasdemir | 214-222 |
| DOI: 10.17261/Pressacademia.2020.1289 | |
| JEFA- V.7-ISS.3-2020(2)-p.214-222 | |
| 3. The determining factors of financial inclusion in Turkey
Hasmet Sarigul | 223-235 |
| DOI: 10.17261/Pressacademia.2020.1290 | |
| JEFA- V.7-ISS.3-2020(3)-p.223-235 | |
| 4. Testing the weak form market efficiency of Borsa Istanbul: an empirical evidence from Turkish banking sector stocks
Suaidiq Mohammed Hailu, Gamze Vural | 236-249 |
| DOI: 10.17261/Pressacademia.2020.1291 | |
| JEFA- V.7-ISS.3-2020(4)-p.236-249 | |
| 5. Empirical analysis of energy consumption and economic growth in Tanzania: based on Engel and Granger tests
Hamis Miroaji Ally Simba, Mehmet Fatih Oztek | 250-262 |
| DOI: 10.17261/Pressacademia.2020.1292 | |
| JEFA- V.7-ISS.3-2020(5)-p.250-262 | |
| 6. Political stability and economic growth relation: the case of Turkey and Turkic republics
Yavuz Ozek | 263-273 |
| DOI: 10.17261/Pressacademia.2020.1293 | |
| JEFA- V.7-ISS.3-2020(6)-p.263-273 | |
| 7. Proactive risk management approach in reducing the agricultural supply chain risks
Tarım tedarik zinciri risklerinin azaltılmasında proakтив risk yönetimi yaklaşi
Pinar Demir, Nilgun Kayali | 274-286 |
| DOI: 10.17261/Pressacademia.2020.1294 | |
| JEFA- V.7-ISS.3-2020(7)-p.274-286 | |
| 8. Empirical study on organizational performance: the moderating effect of organizational culture
Muhammad Heno Rifdas Hafizh, Khoirul Aswar | 287-297 |
| DOI: 10.17261/Pressacademia.2020.1295 | |
| JEFA- V.7-ISS.3-2020(8)-p.287-297 | |
ANALYSIS OF THE MACROECONOMIC PERFORMANCES OF EUROPEAN COUNTRIES BY GREY RELATIONAL ANALYSIS

DOI: 10.17261/Pressacademia.2020.1288
JEFA- V.7-ISS.3-2020(1)-p.198-213

Hakan Altin
Aksaray University, Faculty of Economics And Administrative Sciences, Department of Business
hakanaltin@aksaray.edu.tr, ORCID: 0000-0002-0012-0016

Date Received: June 25, 2020 Date Accepted: September 6, 2020

To cite this document

Permanent link to this document: http://doi.org/10.17261/Pressacademia.2020.1288
Copyright: Published by PressAcademia and limited licensed re-use rights only.

ABSTRACT

Purpose - A macroeconomic analysis is a statistical analysis showing the current situation of the economy. Thanks to this analysis, individuals, investors, companies, states, and the public can perceive the strengths and weaknesses of the economy and make decisions accordingly. In this study, the macroeconomic performances of forty-four European countries was analyzed.

Methodology- The Grey relational analysis method was used in the study.

Findings- As evaluation criteria, nine macroeconomic variables were determined and thus two important results were obtained. The first was the indication of the Grey relational analysis (GRA) method application, an analysis method consisting of six stages. The second result was the macroeconomic performances of European countries.

Conclusion - According to the obtained findings, the ten countries with the most successful macroeconomic performance were Ireland, Russia, Germany, Azerbaijan, Malta, Luxembourg, Netherlands, United Kingdom, Armenia, and Poland, and the ten countries with the lowest macroeconomic performance were France, Serbia, Finland, Portugal, Italy, Bosnia and Herzegovina, Croatia, Belgium, Montenegro, Ukraine, and Greece. Turkey ranked thirty-third among the forty-four countries

Keywords: Grey theory, Grey relational analysis, economic performances, European countries, Index of Economic Freedom.

JEL Codes: C00, C02, G11

1. INTRODUCTION

Macroeconomic analysis is a statistical analysis showing the current situation of the economy. Thanks to this analysis, individuals, investors, companies, states, and the public can perceive the strengths and weaknesses of the economy and make decisions accordingly. In the periods of economic progress and recession, the decisions that are taken show differences.

If the price of an asset comprises all information that may affect this price, market is assumed to be active. However, in daily life, decisions are taken in an environment where the assumption of full information is not valid. If the assumption of full information were valid, each decision to be taken would be evaluated as optimal decision. Conversely, the parties have information different from each other when the missing information is valid. The party with this particular knowledge uses the current situation for its own benefit. Simply put, insiders have more information than outsiders. In such an environment, it becomes extremely important to make correct decisions.

Multi-criteria decision making methods are used in the literature to solve various decision-making problems. The solution of the problem arrives at the conclusion with the selection of the highest satisfaction rating alternative among a series of alternatives. One of these methods is the Grey relational analysis method (GRA). GRA is a method used to analyze the relationships between discrete data. The most important advantage of the GRA method is that its results are based on original data, and its calculation is easy to make. The Grey method, which consists of six steps, starts with the preparation of the decision-making matrix and ends with the comparison of the comparability series the and reference series.
In this study, the macroeconomic performances of forty-four European countries were analyzed by using the Grey relational analysis method. As evaluation criteria, nine economic variables were used. Each of these variables was a risk factor, and these risk factors are affected by every new piece of information in the market and the general condition of the economy. These risk factors consist of two components. The first is systematic risk. The second is unsystematic risk. Unsystematic risk can be completely eliminated. However, systematic risk is a risk that the entire market is exposed to. This risk can be reduced but not completely eliminated. These effects constantly change the economic performance of countries.

2. LITERATURE REVIEW

In the literature, there are a large number of studies conducted in the fields of health sciences, social sciences, and sport sciences based on the GRA method. Some of these studies are summarized below. Nevertheless, there was no study in the literature examining the economic performances of countries based on the GRA method.

Wu (2002) examined the GRA method in his study in which it was concluded that the GRA method is simple and easy to calculate and understand. On the other hand, it is not easy to determine which method is more reliable and reasonable for the problem of multiple attribute decision making (MADM). The best way to cope with this deficiency is to apply several MADM methods to the same problem, compare the results, and make the final decision based on the results obtained.

Lin and Lin (2002) evaluated the process of electric discharge machining (EDM) with Grey Relational Analysis method. To solve the EDM process with multi-performance characteristics, the Grey relational analysis was used. Optimal processing parameters were then calculated with the Grey relational degree as the performance index. The experimental results show that the processing performance in EDM process could be effectively improved with this approach.

Kao and Hocheng (2003) used the Grey relational analysis method in their study. According to Grey system theory, the Grey relational analysis is a method used to analyze the relationships between multi-factor series and less data, which is considered to be more advantageous than statistical regression analysis. The analysis of multi-performance characteristics was made with the Grey relational degree. Grey relational analysis can be used for multiple input, discrete data and uncertain experimental studies. The experiments carried out indicated the efficiency of Grey relational analysis, and the efficiency of this approach was confirmed by the experiment and variance analysis.

Tsai, Chang, and Chen (2003) used the GRA method for the selection of an appropriate vendor. They recommended this method for determining the performances of the vendors due to the advantages of the Grey multiple attributes decision. The suggested approach provided to be performed measurement in accordance with the requirements of every enterprise for the supplier evaluation. It determined the general performance of a supplier and the order of selection of suitable vendors. The optimal decision was also made in compliance with the general performance.

Chang, Tsai, and Chen (2003) indicated that Grey relational analysis method can be used in the analysis of sport technologies, the selection of a trainer, and the evaluation of general performance in the decathlon. The most important advantage of the Grey theory is to consider not only imperfect knowledge but also uncertain problems in detail. It serves as an analysis tool particularly when there is not enough data. Thanks to the quantitative analysis of the Grey relationship, more accurate and subjective data are provided. It is thought that this method might be a reliable analytic approach for the decathlon evaluation models.

Singh, Raghukandan, and Pai (2004) made use of Grey relational analysis in their study when examining the optimization of electric discharge machining parameters. In this process, they normalized the results obtained from the experiment which they conducted in the first step. In the second step, they calculated Grey’s relational coefficient and, in the third step, the relational degree of Grey. After that, in the fourth step, they made a statistical variance analysis and, in the fifth step, determined the optimal level of the parameters. Finally, in the last step, the correctness of the parameters was confirmed with a validity check. During the application of this technique, the Grey relational analysis transformed the multi-response variable to a single response Grey relational degree. In this way, the optimization procedure became simple and intelligible.

In Tosun’s (2006) study, the optimum parameters were determined for the multi-performance characteristics in the terebration process by using GRA (surface roughness and burr height). Optimal processing parameters were calculated with the Grey relational degree obtained from the Grey relational analysis for multi-performance characteristics. The experimental results showed that surface roughness and burr height in the terebration process can be effectively improved with the new approach.

Wu (2007) made a comparison between the Grey relational analysis to be used and RIDIT methods in order to examine the data obtained from Likert scale questionnaires. The Likert scale is one of the most used methods in social sciences for
collecting data about attitudes, perceptions, values, habits, and behavioral changes. The sample size used influences the reliability of the results produced by using conventional statistical analysis techniques. It was determined that the results obtained by applying the methods used were extremely consistent with each other.

Kuo, Yang and Huang (2008) examined the decision-making process with the GRA method. There are many different situations in daily life and workplace that cause a decision problem. Some of them are related to the selection of the best among the existing multiple alternatives. However, only one alternative does not produce the best result for the all performance features. For the solution of these kind of problems, it is suggested that the multiple attribute decision-making (MADM) method using Grey relational analysis (GRA). The two cases examined show that GRA is an effective tool for solving a MADM problem.

Hsu and Wang (2009) analyzed the effect of multiple determinants on the integrated circuit industry by using Grey relational analysis and a Grey prediction model in their study. Advanced technology industries play an important role in the period of social economic change. Reliable data are an indispensable source of information for a prediction model. Technological forecasting in general suffers from limited historical data and imperfect information. Within this framework, while conventional time series models do not exceed the requirement of historical data collection, multi-variable predictions are more suitable than single variables for complex decision problems.

Zhai, Khoo, and Zhong (2009) examined the design concept assessment with the GRA method in their study. The design concept assessment is a multi-criteria decision-making process consisting of a large quantity of generally indefinite data and expert information. The suggested rough-grey analysis indicated that indefinite design and expert information can be modelled more effectively and objectively.

Hou (2010) developed an optimization model based on the fundamental assumption of a conventional Grey relational analysis (GRA) method. Additionally, he examined multi-featured decision-making problems related to intuitionist fuzzy information in which the information is not exactly known, and the values of the features are in the form of intuitive fuzzy numbers. Consequently, the degree of the Grey relationship between every alternative and positive ideal solution was calculated. In the study, an explanatory example was given to show effectiveness and confirm the approach.

Al-Refaie, Al-Durham, and Bata (2010) suggested an approach to optimize multiple responses in the Taguchi method by using regression models and Grey relational analysis which uses every quality response to transform a single level of Grey. Accordingly, the larger level of Grey shows a better performance. The level of factor with the highest-level degree was selected as the most appropriate level for this factor. Moreover, this approach can be used for imperfect data.

Xiao, Wang, Fu, and Zhao (2012) examined the fundamental factors of the Web service quality by using Grey relational analysis theory which concentrates on uncertain situations; however, in this process, while part of the information is known, the other part is not known. Grey relational theory argues that the objective system and data characterization are very complicated. However, the factors in the system affect each other internally, and every factor has a very significant role. Grey relational analysis is the most common and dynamic component of the Grey system theory. Although the given information is limited, GRA produces a simple result for analyzing the series relationship or system behaviors. The basic element of the method is the quantitative comparison of the effect factors in the dynamic development trend of the system.

Liu, Baniyounes, Rasul, Amanullah, and Khan (2013) analyzed the sustainability of a renewable energy system (RES) based on Grey relational analysis. The object of the study was to improve a sustainability indicator in order to evaluate the sustainability of renewable energy sources precisely and comprehensively. Grey regression analysis method was used to cope with uncertainties in the determination and assessment of sustainability. The Grey indicator is one of the best ways to evaluate the sustainability of RES. It is a suitable and better tool for users, decision-makers, and researchers.

Hashemi, Karimi, and Tavana (2015) examined supplier selection decisions with an improved GRA method, in their study. To weight the significance level of evaluation criteria, the analytic hierarchy process (AHP) method was used. The suggested approach allows the linguistic evaluation system in the green supplier selection process to be used and the decision-makers to participate in the evaluation process.

Wang, Zhang, Chong and Wang (2017) evaluated supplier performance with seventeen flexible criteria under a combined methodology consisting of an analytic hierarchy process (AHP) and Grey relational analysis (GRA). A supplier selection suitable for effective information integration was suggested for supply chain management. The flexibility capability of a supplier is considerably important for supplier selection. The flexibility criteria influencing the selection priorities of the suppliers were determined by changing the weights given to each criterion. AHP and GRA examine the criteria and then rank the suppliers, respectively.
Chen and Lee (2019) examined the Grey relational analysis (GRA) method to estimate the electricity consumption of public buildings using weather conditions. Increasing environmental awareness has increased the importance of controlling and monitoring electricity consumption. Grey relational analysis has been proposed to analyze the relationship between weather conditions and electricity consumption. In addition, adaptive network-based fuzzy inference systems (ANFIS) method was used to estimate electricity consumption according to weather conditions and human activities. There are two important results. First, it shows that ANFISs achieve higher performance with fewer parameters. Second, the GRA can evaluate the magnitude of the relationship between the factors used and a particular output.

Tan, Chen and Wu (2019) used Analytic Hierarchy Process and Grey Relational Analysis Approaches in environmentally friendly product design. Increasing public awareness of environmental protection and environmental protection laws are entering into force worldwide. Green awareness and green product design have become a critical issue for companies. On the other hand, green sensitivity increases the production costs of companies. In this context, environmental performance and market value of green design has been examined. The proposed methods are an important tool for small and medium-sized enterprises to implement green initiatives in their new product design processes.

Lin, Cheng and Chen (2020) used Grey Relational Analysis (GRA) method for product design in their study. Designers experience uncertainties during the development of their new products. Without defined design goals, new product development negatively impacts productivity. Therefore, it is important for companies to find an optimization approach that facilitates the new product development process and reduces costs. For this, the grey relational analysis method is proposed to analyze and optimize the parameters of the new product design. The results show that the proposed method can increase variety in new product designs and reduce costs.

3. DATA AND METHODOLOGY

This study has two important aims, first, to demonstrate the application of the GRA method, and, second one, to analyze the macroeconomic performances of European countries with the GRA method.

The forty-four European countries are evaluated, and the nine evaluation criteria are indicated in the range of A3-A47 and in the range of C1-C9, respectively, in Table 1. The assessment criteria were determined as tax burden percentage of GDP, government expenditure percentage of GDP, inflation percentage, public debt percentage of GDP, unemployment percentage, GDP (billions, PPP), GDP growth rate percentage, GDP per Capita (PPP), and FDI inflow (millions). The data from 2020 were taken from the Index of Economic Freedom.

3.1. Grey Relational Analysis Method

The mathematical form of the model is as below. In its construction, we benefited from the study by Wu (2002, p. 211-212).

Step 1. Preparation of Data Set and Decision Matrix

The series to be subjected to the comparison of the decision problem is determined.

$$x_i = (x_i(1), x_i(2),..., x_i(j), ..., x_i(n)),$$

$$i = 1,2,3,.. m$$

$$j = 1,2,3,.. n$$ (1)

Step 2. Formation of the Reference (x_0) and Compared (x_i) Series.

The reference series is $x_0 = (x_0(1), x_0(2),..., x_0(j), ..., x_0(n))$. The compared series is $(x_i), (x_i(1), x_i(2),..., x_i(j), ..., x_i(n))$. The compared xi series can be represented in a matrix form:
Step 3. Normalization of the Data Set

The data can be processed as one of the three types, that is, the larger is better, the smaller is better, and the nominal is the best.

The formula for the larger-better conversion is defined as below:

\[x'_i(j) = \frac{x_i(j) - \min_j x_i(j)}{\max_j x_i(j) - \min_j x_i(j)} \]

(3)

\(x'_i(j) \) shows the value converted.

The formula to be converted for the smaller-better:

\[x'_i(j) = \frac{\max_j x_i(j) - x_i(j)}{\max_j x_i(j) - \min_j x_i(j)} \]

(4)

The formula to be converted for nominal-the-best:

\[x'_i(j) = \frac{|x_i(j) - x_{ib}(j)|}{\max_j x_i(j) - x_{ib}(j)} \]

(5)

Furthermore, the reference \(x_0 \) series should be normalized with the equation of (3) or (5). For example, if the larger-better transformation is applied,

\[x'_0(j) = \frac{x_0(j) - \min_j x_i(j)}{\max_j x_i(j) - \min_j x_i(j)} \]

In this way, the normalized reference series of \(x_0 \) can be calculated.

After the original data set is normalized by one of the three of them, the conversion types shown in Equation (2) can be revised as follows:
Step 4. Calculation of the Distance of $\Delta_0(j)$
The obtained value is the absolute difference between x_0^* and x_i^*.

$$\Delta_0(j) = |x_0^*(j) - x_i^*(j)|$$

(6)

$$X_i^* = \begin{bmatrix} x_1^*(1) & x_1^*(2) & x_1^*(3) & \ldots & x_1^*(n) \\ x_2^*(1) & x_2^*(2) & x_2^*(3) & \ldots & x_2^*(n) \\ x_3^*(1) & x_3^*(2) & x_3^*(3) & \ldots & x_3^*(n) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_n^*(1) & x_n^*(2) & x_n^*(3) & \ldots & x_n^*(n) \end{bmatrix}$$

Step 5. Application of Grey Relational Equation to Calculate the Grey Relational Coefficient $\Gamma_0(j)$
The Grey relational equation is applied to calculate the Grey relational coefficient $\Gamma_0(j)$ by using the equation given below:

$$\gamma_0(j) = \frac{\Delta_{\min} + \zeta \Delta_{\max}}{\Delta_0(j) + \zeta \Delta_{\max}}$$

(8)

$$\Delta_{\max} = \max_i \max_j \Delta_0(i,j), \Delta_{\min} = \min_i \min_j \Delta_0(i,j), \text{ in cases where}$$

$$\zeta \in [0,1]$$

Step 6. Calculation of the Degree of the Grey Coefficient Γ_0
When the weight of the criteria (W_i) is determined, the degree of the Grey coefficient Γ_0 is calculated as follows:

$$\Gamma_0 = \sum_{j=1}^{n} [W_i(j) \times r_0(j)]$$

(9)

For the decision-making processes, if any alternative has the highest Γ_0 value, it is the most important alternative. For this reason, the priorities of the alternatives can be ranked based on the Γ_0 values.
4. FINDINGS AND DISCUSSIONS

The study by Yıldırım (2018, p. 236-242) was used for the solution of the problem.

Step 1. Determination of the Decision Matrix

Nine assessment criteria were determined to state the macroeconomic performances of the countries in the decision problem. The countries subject to performance evaluations and criteria values are shown in Table 1 by using a Microsoft Excel spreadsheet.

Table 1: Data Set

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C1</td>
<td>C2</td>
<td>C3</td>
<td>C4</td>
<td>C5</td>
<td>C6</td>
<td>C7</td>
<td>C8</td>
<td>C9</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Min</td>
<td>Min</td>
<td>Min</td>
<td>Min</td>
<td>Max</td>
<td>Max</td>
<td>Max</td>
<td>Max</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Albania</td>
<td>26</td>
<td>29</td>
<td>2</td>
<td>69</td>
<td>14</td>
<td>38</td>
<td>4</td>
<td>13345</td>
<td>1294</td>
</tr>
<tr>
<td>4</td>
<td>Armenia</td>
<td>21</td>
<td>25</td>
<td>3</td>
<td>48</td>
<td>18</td>
<td>30</td>
<td>5</td>
<td>10176</td>
<td>254</td>
</tr>
<tr>
<td>5</td>
<td>Austria</td>
<td>42</td>
<td>49</td>
<td>2</td>
<td>74</td>
<td>5</td>
<td>463</td>
<td>3</td>
<td>52137</td>
<td>7618</td>
</tr>
<tr>
<td>6</td>
<td>Azerbaijan</td>
<td>13</td>
<td>35</td>
<td>2</td>
<td>19</td>
<td>5</td>
<td>180</td>
<td>1</td>
<td>18076</td>
<td>1403</td>
</tr>
<tr>
<td>7</td>
<td>Belarus</td>
<td>25</td>
<td>39</td>
<td>5</td>
<td>48</td>
<td>189</td>
<td>3</td>
<td>20003</td>
<td>1469</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Belgium</td>
<td>45</td>
<td>53</td>
<td>2</td>
<td>101</td>
<td>6</td>
<td>551</td>
<td>1</td>
<td>48245</td>
<td>4873</td>
</tr>
<tr>
<td>9</td>
<td>Bosnia and Herzegovina</td>
<td>38</td>
<td>41</td>
<td>1</td>
<td>37</td>
<td>21</td>
<td>47</td>
<td>3</td>
<td>13491</td>
<td>468</td>
</tr>
<tr>
<td>10</td>
<td>Bulgaria</td>
<td>28</td>
<td>34</td>
<td>3</td>
<td>21</td>
<td>5</td>
<td>162</td>
<td>3</td>
<td>23156</td>
<td>2059</td>
</tr>
<tr>
<td>11</td>
<td>Croatia</td>
<td>39</td>
<td>47</td>
<td>2</td>
<td>74</td>
<td>9</td>
<td>107</td>
<td>3</td>
<td>26221</td>
<td>1159</td>
</tr>
<tr>
<td>12</td>
<td>Cyprus</td>
<td>34</td>
<td>37</td>
<td>1</td>
<td>103</td>
<td>8</td>
<td>35</td>
<td>4</td>
<td>39973</td>
<td>3285</td>
</tr>
<tr>
<td>13</td>
<td>Czech Republic</td>
<td>35</td>
<td>40</td>
<td>2</td>
<td>33</td>
<td>2</td>
<td>396</td>
<td>3</td>
<td>37371</td>
<td>9479</td>
</tr>
<tr>
<td>14</td>
<td>Denmark</td>
<td>46</td>
<td>52</td>
<td>1</td>
<td>34</td>
<td>5</td>
<td>301</td>
<td>1</td>
<td>52121</td>
<td>1789</td>
</tr>
<tr>
<td>15</td>
<td>Estonia</td>
<td>33</td>
<td>39</td>
<td>3</td>
<td>8</td>
<td>6</td>
<td>45</td>
<td>4</td>
<td>34096</td>
<td>1309</td>
</tr>
<tr>
<td>16</td>
<td>Finland</td>
<td>43</td>
<td>54</td>
<td>1</td>
<td>61</td>
<td>8</td>
<td>257</td>
<td>2</td>
<td>46430</td>
<td>1225</td>
</tr>
<tr>
<td>17</td>
<td>France</td>
<td>46</td>
<td>56</td>
<td>2</td>
<td>99</td>
<td>9</td>
<td>2963</td>
<td>2</td>
<td>45775</td>
<td>37294</td>
</tr>
<tr>
<td>18</td>
<td>Georgia</td>
<td>26</td>
<td>30</td>
<td>3</td>
<td>45</td>
<td>14</td>
<td>43</td>
<td>5</td>
<td>11485</td>
<td>1232</td>
</tr>
<tr>
<td>19</td>
<td>Germany</td>
<td>38</td>
<td>44</td>
<td>2</td>
<td>60</td>
<td>3</td>
<td>4356</td>
<td>1</td>
<td>52559</td>
<td>25706</td>
</tr>
<tr>
<td>20</td>
<td>Greece</td>
<td>39</td>
<td>48</td>
<td>1</td>
<td>183</td>
<td>19</td>
<td>313</td>
<td>2</td>
<td>29123</td>
<td>4257</td>
</tr>
<tr>
<td>21</td>
<td>Hungary</td>
<td>38</td>
<td>47</td>
<td>3</td>
<td>69</td>
<td>4</td>
<td>312</td>
<td>5</td>
<td>31903</td>
<td>6389</td>
</tr>
<tr>
<td>22</td>
<td>Iceland</td>
<td>38</td>
<td>43</td>
<td>3</td>
<td>35</td>
<td>3</td>
<td>20</td>
<td>5</td>
<td>55917</td>
<td>-336</td>
</tr>
<tr>
<td>23</td>
<td>Ireland</td>
<td>23</td>
<td>27</td>
<td>1</td>
<td>65</td>
<td>6</td>
<td>386</td>
<td>7</td>
<td>78785</td>
<td>-66346</td>
</tr>
<tr>
<td>24</td>
<td>Italy</td>
<td>42</td>
<td>49</td>
<td>1</td>
<td>132</td>
<td>10</td>
<td>2397</td>
<td>1</td>
<td>39637</td>
<td>24276</td>
</tr>
<tr>
<td>25</td>
<td>Kosovo</td>
<td>23</td>
<td>28</td>
<td>1</td>
<td>17</td>
<td>31</td>
<td>21</td>
<td>4</td>
<td>11552</td>
<td>3590</td>
</tr>
<tr>
<td>26</td>
<td>Latvia</td>
<td>30</td>
<td>37</td>
<td>3</td>
<td>38</td>
<td>8</td>
<td>58</td>
<td>5</td>
<td>29901</td>
<td>879</td>
</tr>
<tr>
<td>27</td>
<td>Lithuania</td>
<td>30</td>
<td>34</td>
<td>3</td>
<td>36</td>
<td>6</td>
<td>97</td>
<td>3</td>
<td>34826</td>
<td>905</td>
</tr>
<tr>
<td>28</td>
<td>Luxembourg</td>
<td>39</td>
<td>43</td>
<td>2</td>
<td>22</td>
<td>6</td>
<td>64</td>
<td>3</td>
<td>106705</td>
<td>-5615</td>
</tr>
<tr>
<td>29</td>
<td>North Macedonia</td>
<td>26</td>
<td>31</td>
<td>1</td>
<td>40</td>
<td>22</td>
<td>33</td>
<td>3</td>
<td>15709</td>
<td>737</td>
</tr>
<tr>
<td>30</td>
<td>Malta</td>
<td>33</td>
<td>36</td>
<td>2</td>
<td>45</td>
<td>5</td>
<td>21</td>
<td>6</td>
<td>45606</td>
<td>4016</td>
</tr>
<tr>
<td>31</td>
<td>Moldova</td>
<td>33</td>
<td>31</td>
<td>3</td>
<td>27</td>
<td>3</td>
<td>26</td>
<td>4</td>
<td>7305</td>
<td>228</td>
</tr>
</tbody>
</table>
Step 2. The Formation of the Reference Series and the Comparison Matrix

While creating the reference series of the application, the data set was calculated as indicated in Table 2 by using the values belonging to the aforesaid countries. For this reason, the formula =IF(M1="Min"; MIN(M3:M47);MAX(M3:M47)) is written in line M2.

<table>
<thead>
<tr>
<th></th>
<th>Montenegro</th>
<th>Netherlands</th>
<th>Norway</th>
<th>Poland</th>
<th>Portugal</th>
<th>Romania</th>
<th>Russia</th>
<th>Serbia</th>
<th>Slovakia</th>
<th>Slovenia</th>
<th>Spain</th>
<th>Sweden</th>
<th>Switzerland</th>
<th>Turkey</th>
<th>Ukraine</th>
<th>United Kingdom</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>36</td>
<td>48</td>
<td>3</td>
<td>72</td>
<td>16</td>
<td>12</td>
<td>5</td>
<td>19043</td>
<td>490</td>
<td>55383</td>
<td>69659</td>
<td>542</td>
<td>64649</td>
<td>2194</td>
<td>2355</td>
<td>45705</td>
</tr>
</tbody>
</table>

Table 2: Adding Reference Series to the Data Set

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>M</th>
<th>N</th>
<th>O</th>
<th>P</th>
<th>Q</th>
<th>R</th>
<th>S</th>
<th>T</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Referans</td>
<td>13</td>
<td>25</td>
<td>1</td>
<td>8</td>
<td>2</td>
<td>4356</td>
<td>7</td>
<td>106705</td>
<td>69659</td>
</tr>
<tr>
<td>3</td>
<td>Albania</td>
<td>26</td>
<td>29</td>
<td>2</td>
<td>69</td>
<td>14</td>
<td>38</td>
<td>4</td>
<td>13345</td>
<td>1294</td>
</tr>
<tr>
<td>4</td>
<td>Armenia</td>
<td>21</td>
<td>25</td>
<td>3</td>
<td>48</td>
<td>18</td>
<td>30</td>
<td>5</td>
<td>10176</td>
<td>254</td>
</tr>
<tr>
<td>5</td>
<td>Austria</td>
<td>42</td>
<td>49</td>
<td>2</td>
<td>74</td>
<td>5</td>
<td>463</td>
<td>3</td>
<td>52137</td>
<td>7618</td>
</tr>
<tr>
<td>6</td>
<td>Azerbaijan</td>
<td>13</td>
<td>35</td>
<td>2</td>
<td>19</td>
<td>5</td>
<td>180</td>
<td>1</td>
<td>18076</td>
<td>1403</td>
</tr>
<tr>
<td>7</td>
<td>Belarus</td>
<td>25</td>
<td>39</td>
<td>5</td>
<td>48</td>
<td>6</td>
<td>189</td>
<td>3</td>
<td>20003</td>
<td>1469</td>
</tr>
<tr>
<td>8</td>
<td>Belgium</td>
<td>45</td>
<td>53</td>
<td>2</td>
<td>101</td>
<td>6</td>
<td>551</td>
<td>1</td>
<td>48245</td>
<td>4873</td>
</tr>
<tr>
<td>9</td>
<td>Bosnia and Herzegovina</td>
<td>38</td>
<td>41</td>
<td>1</td>
<td>37</td>
<td>21</td>
<td>47</td>
<td>3</td>
<td>13491</td>
<td>468</td>
</tr>
<tr>
<td>10</td>
<td>Bulgaria</td>
<td>28</td>
<td>34</td>
<td>3</td>
<td>21</td>
<td>5</td>
<td>162</td>
<td>3</td>
<td>23156</td>
<td>2059</td>
</tr>
<tr>
<td>11</td>
<td>Croatia</td>
<td>39</td>
<td>47</td>
<td>2</td>
<td>74</td>
<td>9</td>
<td>107</td>
<td>3</td>
<td>26221</td>
<td>1159</td>
</tr>
<tr>
<td>12</td>
<td>Cyprus</td>
<td>34</td>
<td>37</td>
<td>1</td>
<td>103</td>
<td>8</td>
<td>35</td>
<td>4</td>
<td>39973</td>
<td>3285</td>
</tr>
<tr>
<td>13</td>
<td>Czech Republic</td>
<td>35</td>
<td>40</td>
<td>2</td>
<td>33</td>
<td>2</td>
<td>396</td>
<td>3</td>
<td>37371</td>
<td>9479</td>
</tr>
<tr>
<td>14</td>
<td>Denmark</td>
<td>46</td>
<td>52</td>
<td>1</td>
<td>34</td>
<td>5</td>
<td>301</td>
<td>1</td>
<td>52121</td>
<td>1789</td>
</tr>
<tr>
<td>15</td>
<td>Estonia</td>
<td>33</td>
<td>39</td>
<td>3</td>
<td>8</td>
<td>6</td>
<td>45</td>
<td>4</td>
<td>34096</td>
<td>1309</td>
</tr>
<tr>
<td>16</td>
<td>Finland</td>
<td>43</td>
<td>54</td>
<td>1</td>
<td>61</td>
<td>8</td>
<td>257</td>
<td>2</td>
<td>46430</td>
<td>1225</td>
</tr>
<tr>
<td>17</td>
<td>France</td>
<td>46</td>
<td>56</td>
<td>2</td>
<td>99</td>
<td>9</td>
<td>2963</td>
<td>2</td>
<td>45775</td>
<td>37294</td>
</tr>
</tbody>
</table>

DOI: 10.17261/Pressacademia.2020.1288
Step 3. The Normalization Process and the Formation of the Normalization Matrix

In the normalization process, the calculation was made by assigning the minimization status for the criteria labeled Min and the maximization statues for the criteria labeled Max. The normalization calculations are shown in Table 3.

For this, the formula =IF(M$1="Maks";((M$2-MIN(M$2:M$47))/(MAX(M$2:M$47)-MIN(M$2:M$47)));((MAX(M$2:M$47)-M$2)/(MAX(M$2:M$47)-MIN(M$2:M$47)))) is written in line B51.

Table 3: Normalization Process

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>C1</td>
<td>C2</td>
<td>C3</td>
<td>C4</td>
<td>C5</td>
<td>C6</td>
<td>C7</td>
<td>C8</td>
<td>C9</td>
</tr>
<tr>
<td>51</td>
<td>Reference</td>
<td>1,000</td>
<td>1,000</td>
<td>1,000</td>
<td>1,000</td>
<td>1,000</td>
<td>1,000</td>
<td>1,000</td>
<td>1,000</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------------------</td>
<td>------------------------</td>
<td>-------------</td>
<td>---------------------</td>
<td>-----------------------</td>
<td>----------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Albania</td>
<td>0.623</td>
<td>0.882</td>
<td>0.916</td>
<td>0.654</td>
<td>0.591</td>
<td>0.006</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Armenia</td>
<td>0.772</td>
<td>1.000</td>
<td>0.884</td>
<td>0.769</td>
<td>0.456</td>
<td>0.004</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Austria</td>
<td>0.134</td>
<td>0.231</td>
<td>0.910</td>
<td>0.622</td>
<td>0.915</td>
<td>0.104</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azerbaijan</td>
<td>1.000</td>
<td>0.687</td>
<td>0.898</td>
<td>0.935</td>
<td>0.900</td>
<td>0.039</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belarus</td>
<td>0.641</td>
<td>0.559</td>
<td>0.734</td>
<td>0.773</td>
<td>0.883</td>
<td>0.041</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belgium</td>
<td>0.049</td>
<td>0.125</td>
<td>0.897</td>
<td>0.467</td>
<td>0.861</td>
<td>0.124</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bosnia and Herzegovina</td>
<td>0.252</td>
<td>0.494</td>
<td>0.958</td>
<td>0.835</td>
<td>0.345</td>
<td>0.008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bulgaria</td>
<td>0.562</td>
<td>0.736</td>
<td>0.877</td>
<td>0.929</td>
<td>0.897</td>
<td>0.035</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Croatia</td>
<td>0.231</td>
<td>0.315</td>
<td>0.949</td>
<td>0.624</td>
<td>0.769</td>
<td>0.022</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyprus</td>
<td>0.380</td>
<td>0.622</td>
<td>0.995</td>
<td>0.461</td>
<td>0.797</td>
<td>0.005</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Czech Republic</td>
<td>0.343</td>
<td>0.539</td>
<td>0.907</td>
<td>0.858</td>
<td>1.000</td>
<td>0.088</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denmark</td>
<td>0.006</td>
<td>0.151</td>
<td>1.000</td>
<td>0.850</td>
<td>0.907</td>
<td>0.067</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estonia</td>
<td>0.401</td>
<td>0.547</td>
<td>0.827</td>
<td>1.000</td>
<td>0.890</td>
<td>0.008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finland</td>
<td>0.088</td>
<td>0.065</td>
<td>0.971</td>
<td>0.701</td>
<td>0.808</td>
<td>0.056</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>0.000</td>
<td>0.000</td>
<td>0.911</td>
<td>0.483</td>
<td>0.758</td>
<td>0.679</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Georgia</td>
<td>0.623</td>
<td>0.864</td>
<td>0.878</td>
<td>0.792</td>
<td>0.584</td>
<td>0.007</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>0.264</td>
<td>0.404</td>
<td>0.922</td>
<td>0.705</td>
<td>0.964</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greece</td>
<td>0.207</td>
<td>0.279</td>
<td>0.996</td>
<td>0.000</td>
<td>0.402</td>
<td>0.069</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hungary</td>
<td>0.258</td>
<td>0.428</td>
<td>0.874</td>
<td>0.844</td>
<td>0.982</td>
<td>0.002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iceland</td>
<td>0.711</td>
<td>0.963</td>
<td>1.000</td>
<td>0.674</td>
<td>0.883</td>
<td>0.086</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td>0.116</td>
<td>0.245</td>
<td>0.966</td>
<td>0.292</td>
<td>0.722</td>
<td>0.549</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kosovo</td>
<td>0.696</td>
<td>0.916</td>
<td>0.978</td>
<td>0.949</td>
<td>0.000</td>
<td>0.002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latvia</td>
<td>0.480</td>
<td>0.617</td>
<td>0.882</td>
<td>0.831</td>
<td>0.804</td>
<td>0.011</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lithuania</td>
<td>0.498</td>
<td>0.734</td>
<td>0.883</td>
<td>0.841</td>
<td>0.872</td>
<td>0.020</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luxembourg</td>
<td>0.228</td>
<td>0.444</td>
<td>0.916</td>
<td>0.921</td>
<td>0.890</td>
<td>0.012</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Macedonia</td>
<td>0.629</td>
<td>0.817</td>
<td>0.952</td>
<td>0.820</td>
<td>0.317</td>
<td>0.005</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malta</td>
<td>0.410</td>
<td>0.643</td>
<td>0.934</td>
<td>0.787</td>
<td>0.922</td>
<td>0.002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moldova</td>
<td>0.395</td>
<td>0.828</td>
<td>0.850</td>
<td>0.891</td>
<td>0.964</td>
<td>0.003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Montenegro</td>
<td>0.310</td>
<td>0.286</td>
<td>0.879</td>
<td>0.635</td>
<td>0.534</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Netherlands</td>
<td>0.225</td>
<td>0.441</td>
<td>0.943</td>
<td>0.735</td>
<td>0.947</td>
<td>0.220</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norway</td>
<td>0.243</td>
<td>0.214</td>
<td>0.868</td>
<td>0.836</td>
<td>0.947</td>
<td>0.088</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poland</td>
<td>0.374</td>
<td>0.488</td>
<td>0.943</td>
<td>0.770</td>
<td>0.954</td>
<td>0.276</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Portugal</td>
<td>0.350</td>
<td>0.374</td>
<td>0.971</td>
<td>0.353</td>
<td>0.840</td>
<td>0.073</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Romania</td>
<td>0.653</td>
<td>0.806</td>
<td>0.749</td>
<td>0.837</td>
<td>0.932</td>
<td>0.116</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Russia</td>
<td>0.669</td>
<td>0.699</td>
<td>0.861</td>
<td>0.966</td>
<td>0.918</td>
<td>0.967</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serbia</td>
<td>0.307</td>
<td>0.499</td>
<td>0.920</td>
<td>0.736</td>
<td>0.605</td>
<td>0.026</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slovakia</td>
<td>0.404</td>
<td>0.505</td>
<td>0.884</td>
<td>0.767</td>
<td>0.843</td>
<td>0.041</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slovenia</td>
<td>0.310</td>
<td>0.413</td>
<td>0.934</td>
<td>0.655</td>
<td>0.890</td>
<td>0.015</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4: Absolute Value Table

<table>
<thead>
<tr>
<th>L</th>
<th>M</th>
<th>N</th>
<th>O</th>
<th>P</th>
<th>Q</th>
<th>R</th>
<th>S</th>
<th>T</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Albania</td>
<td>0.377</td>
<td>0.118</td>
<td>0.084</td>
<td>0.346</td>
<td>0.409</td>
<td>0.994</td>
<td>0.447</td>
<td>0.939</td>
<td>0.436</td>
</tr>
<tr>
<td>53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Armenia</td>
<td>0.228</td>
<td>0.000</td>
<td>0.116</td>
<td>0.231</td>
<td>0.544</td>
<td>0.996</td>
<td>0.301</td>
<td>0.971</td>
<td>0.442</td>
</tr>
<tr>
<td>54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Austria</td>
<td>0.866</td>
<td>0.769</td>
<td>0.090</td>
<td>0.378</td>
<td>0.085</td>
<td>0.896</td>
<td>0.691</td>
<td>0.549</td>
<td>0.395</td>
</tr>
<tr>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azerbaijan</td>
<td>0.000</td>
<td>0.313</td>
<td>0.102</td>
<td>0.065</td>
<td>0.100</td>
<td>0.961</td>
<td>0.921</td>
<td>0.892</td>
<td>0.435</td>
</tr>
<tr>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belarus</td>
<td>0.359</td>
<td>0.441</td>
<td>0.266</td>
<td>0.227</td>
<td>0.117</td>
<td>0.959</td>
<td>0.638</td>
<td>0.872</td>
<td>0.435</td>
</tr>
<tr>
<td>57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belgium</td>
<td>0.951</td>
<td>0.875</td>
<td>0.103</td>
<td>0.533</td>
<td>0.139</td>
<td>0.876</td>
<td>0.907</td>
<td>0.588</td>
<td>0.413</td>
</tr>
<tr>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bosnia and Herzegovina</td>
<td>0.748</td>
<td>0.506</td>
<td>0.042</td>
<td>0.165</td>
<td>0.655</td>
<td>0.992</td>
<td>0.626</td>
<td>0.938</td>
<td>0.441</td>
</tr>
<tr>
<td>59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bulgaria</td>
<td>0.438</td>
<td>0.264</td>
<td>0.123</td>
<td>0.071</td>
<td>0.103</td>
<td>0.965</td>
<td>0.609</td>
<td>0.841</td>
<td>0.431</td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Croatia</td>
<td>0.769</td>
<td>0.685</td>
<td>0.051</td>
<td>0.376</td>
<td>0.231</td>
<td>0.978</td>
<td>0.692</td>
<td>0.810</td>
<td>0.437</td>
</tr>
<tr>
<td>61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyprus</td>
<td>0.620</td>
<td>0.378</td>
<td>0.005</td>
<td>0.539</td>
<td>0.203</td>
<td>0.995</td>
<td>0.495</td>
<td>0.671</td>
<td>0.423</td>
</tr>
<tr>
<td>62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Czech Republic</td>
<td>0.657</td>
<td>0.461</td>
<td>0.093</td>
<td>0.142</td>
<td>0.000</td>
<td>0.912</td>
<td>0.657</td>
<td>0.698</td>
<td>0.384</td>
</tr>
<tr>
<td>63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denmark</td>
<td>0.994</td>
<td>0.849</td>
<td>0.000</td>
<td>0.150</td>
<td>0.093</td>
<td>0.933</td>
<td>0.943</td>
<td>0.549</td>
<td>0.433</td>
</tr>
<tr>
<td>64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estonia</td>
<td>0.599</td>
<td>0.453</td>
<td>0.173</td>
<td>0.000</td>
<td>0.110</td>
<td>0.992</td>
<td>0.497</td>
<td>0.730</td>
<td>0.436</td>
</tr>
<tr>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finland</td>
<td>0.912</td>
<td>0.935</td>
<td>0.029</td>
<td>0.299</td>
<td>0.192</td>
<td>0.944</td>
<td>0.739</td>
<td>0.606</td>
<td>0.436</td>
</tr>
<tr>
<td>66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>1.000</td>
<td>1.000</td>
<td>0.089</td>
<td>0.517</td>
<td>0.242</td>
<td>0.321</td>
<td>0.892</td>
<td>0.613</td>
<td>0.206</td>
</tr>
<tr>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Georgia</td>
<td>0.377</td>
<td>0.136</td>
<td>0.122</td>
<td>0.208</td>
<td>0.416</td>
<td>0.993</td>
<td>0.355</td>
<td>0.958</td>
<td>0.436</td>
</tr>
<tr>
<td>68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>0.736</td>
<td>0.596</td>
<td>0.078</td>
<td>0.295</td>
<td>0.036</td>
<td>0.000</td>
<td>0.904</td>
<td>0.545</td>
<td>0.280</td>
</tr>
<tr>
<td>69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greece</td>
<td>0.793</td>
<td>0.721</td>
<td>0.004</td>
<td>1.000</td>
<td>0.598</td>
<td>0.931</td>
<td>0.795</td>
<td>0.781</td>
<td>0.417</td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hungary</td>
<td>0.742</td>
<td>0.687</td>
<td>0.137</td>
<td>0.350</td>
<td>0.046</td>
<td>0.931</td>
<td>0.316</td>
<td>0.753</td>
<td>0.403</td>
</tr>
<tr>
<td>71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iceland</td>
<td>0.742</td>
<td>0.572</td>
<td>0.126</td>
<td>0.156</td>
<td>0.018</td>
<td>0.998</td>
<td>0.371</td>
<td>0.511</td>
<td>0.446</td>
</tr>
<tr>
<td>72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ireland</td>
<td>0.289</td>
<td>0.037</td>
<td>0.000</td>
<td>0.326</td>
<td>0.117</td>
<td>0.914</td>
<td>0.000</td>
<td>0.281</td>
<td>0.867</td>
</tr>
<tr>
<td>73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td>0.884</td>
<td>0.755</td>
<td>0.034</td>
<td>0.708</td>
<td>0.278</td>
<td>0.451</td>
<td>1.000</td>
<td>0.675</td>
<td>0.289</td>
</tr>
<tr>
<td>74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kosovo</td>
<td>0.304</td>
<td>0.084</td>
<td>0.022</td>
<td>0.051</td>
<td>1.000</td>
<td>0.998</td>
<td>0.474</td>
<td>0.957</td>
<td>0.421</td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latvia</td>
<td>0.520</td>
<td>0.383</td>
<td>0.118</td>
<td>0.169</td>
<td>0.196</td>
<td>0.989</td>
<td>0.344</td>
<td>0.773</td>
<td>0.438</td>
</tr>
<tr>
<td>76</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lithuania</td>
<td>0.502</td>
<td>0.266</td>
<td>0.117</td>
<td>0.159</td>
<td>0.128</td>
<td>0.980</td>
<td>0.568</td>
<td>0.723</td>
<td>0.438</td>
</tr>
<tr>
<td>77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luxembourg</td>
<td>0.772</td>
<td>0.556</td>
<td>0.084</td>
<td>0.079</td>
<td>0.110</td>
<td>0.988</td>
<td>0.650</td>
<td>0.000</td>
<td>0.480</td>
</tr>
<tr>
<td>78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Macedonia</td>
<td>0.371</td>
<td>0.183</td>
<td>0.048</td>
<td>0.180</td>
<td>0.683</td>
<td>0.995</td>
<td>0.699</td>
<td>0.915</td>
<td>0.439</td>
</tr>
</tbody>
</table>

Step 4: The Calculation of the Absolute Value Table

Table 4 was calculated by showing the absolute differences between the normalized reference curve value and the normalized alternative value. For this, the formula $=1-B52$ is written on the M52 line.
<table>
<thead>
<tr>
<th>Country</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malta</td>
<td>0.590</td>
<td>0.357</td>
<td>0.066</td>
<td>0.213</td>
<td>0.078</td>
<td>0.998</td>
<td>0.071</td>
<td>0.615</td>
<td>0.418</td>
<td></td>
</tr>
<tr>
<td>Moldova</td>
<td>0.605</td>
<td>0.172</td>
<td>0.150</td>
<td>0.109</td>
<td>0.036</td>
<td>0.997</td>
<td>0.474</td>
<td>1.000</td>
<td>0.443</td>
<td></td>
</tr>
<tr>
<td>Montenegro</td>
<td>0.690</td>
<td>0.714</td>
<td>0.121</td>
<td>0.365</td>
<td>0.466</td>
<td>1.000</td>
<td>0.390</td>
<td>0.882</td>
<td>0.441</td>
<td></td>
</tr>
<tr>
<td>Netherlands</td>
<td>0.775</td>
<td>0.559</td>
<td>0.057</td>
<td>0.265</td>
<td>0.053</td>
<td>0.780</td>
<td>0.721</td>
<td>0.506</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>Norway</td>
<td>0.757</td>
<td>0.786</td>
<td>0.132</td>
<td>0.164</td>
<td>0.053</td>
<td>0.912</td>
<td>0.913</td>
<td>0.325</td>
<td>0.560</td>
<td></td>
</tr>
<tr>
<td>Poland</td>
<td>0.626</td>
<td>0.512</td>
<td>0.057</td>
<td>0.230</td>
<td>0.046</td>
<td>0.724</td>
<td>0.289</td>
<td>0.752</td>
<td>0.371</td>
<td></td>
</tr>
<tr>
<td>Portugal</td>
<td>0.650</td>
<td>0.626</td>
<td>0.029</td>
<td>0.647</td>
<td>0.160</td>
<td>0.927</td>
<td>0.798</td>
<td>0.751</td>
<td>0.413</td>
<td></td>
</tr>
<tr>
<td>Romania</td>
<td>0.347</td>
<td>0.194</td>
<td>0.251</td>
<td>0.163</td>
<td>0.068</td>
<td>0.884</td>
<td>0.453</td>
<td>0.807</td>
<td>0.407</td>
<td></td>
</tr>
<tr>
<td>Russia</td>
<td>0.331</td>
<td>0.301</td>
<td>0.139</td>
<td>0.034</td>
<td>0.082</td>
<td>0.033</td>
<td>0.755</td>
<td>0.779</td>
<td>0.359</td>
<td></td>
</tr>
<tr>
<td>Serbia</td>
<td>0.693</td>
<td>0.501</td>
<td>0.080</td>
<td>0.264</td>
<td>0.395</td>
<td>0.974</td>
<td>0.415</td>
<td>0.897</td>
<td>0.418</td>
<td></td>
</tr>
<tr>
<td>Slovakia</td>
<td>0.596</td>
<td>0.495</td>
<td>0.116</td>
<td>0.233</td>
<td>0.157</td>
<td>0.959</td>
<td>0.453</td>
<td>0.720</td>
<td>0.441</td>
<td></td>
</tr>
<tr>
<td>Slovenia</td>
<td>0.690</td>
<td>0.587</td>
<td>0.066</td>
<td>0.345</td>
<td>0.110</td>
<td>0.985</td>
<td>0.391</td>
<td>0.704</td>
<td>0.435</td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>0.620</td>
<td>0.519</td>
<td>0.062</td>
<td>0.508</td>
<td>0.466</td>
<td>0.574</td>
<td>0.722</td>
<td>0.670</td>
<td>0.166</td>
<td></td>
</tr>
<tr>
<td>Sweden</td>
<td>0.933</td>
<td>0.784</td>
<td>0.085</td>
<td>0.177</td>
<td>0.142</td>
<td>0.878</td>
<td>0.754</td>
<td>0.540</td>
<td>0.373</td>
<td></td>
</tr>
<tr>
<td>Switzerland</td>
<td>0.462</td>
<td>0.277</td>
<td>0.014</td>
<td>0.185</td>
<td>0.089</td>
<td>0.876</td>
<td>0.722</td>
<td>0.423</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>Turkey</td>
<td>0.353</td>
<td>0.295</td>
<td>1.000</td>
<td>0.120</td>
<td>0.302</td>
<td>0.475</td>
<td>0.716</td>
<td>0.792</td>
<td>0.362</td>
<td></td>
</tr>
<tr>
<td>Ukraine</td>
<td>0.635</td>
<td>0.534</td>
<td>0.655</td>
<td>0.319</td>
<td>0.249</td>
<td>0.913</td>
<td>0.594</td>
<td>0.980</td>
<td>0.429</td>
<td></td>
</tr>
<tr>
<td>United Kingdom</td>
<td>0.608</td>
<td>0.504</td>
<td>0.113</td>
<td>0.450</td>
<td>0.057</td>
<td>0.304</td>
<td>0.913</td>
<td>0.614</td>
<td>0.033</td>
<td></td>
</tr>
</tbody>
</table>

Step 5. The Formation of Grey Relational Coefficient Matrix

After the absolute values table was formed, the values of Δmax and Δmin were determined by making use of the values in this table. As distinguishing coefficient, ζ = 0.5 was used. Grey relational coefficients, which were created by using the calculated parameters, are indicated in Table 5.

For this, the formula \(\frac{(B \times S146 + (B \times S147 \times S8 \times S145))/(MS2 + (B \times S147 \times S8 \times S145))}{B100} \) is written to the B100 line.

Table 5: Grey Relational Coefficients

<table>
<thead>
<tr>
<th>Country</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 Albania</td>
<td>1.017</td>
<td>1.443</td>
<td>1.526</td>
<td>1.055</td>
<td>0.981</td>
<td>0.597</td>
<td>0.942</td>
<td>0.620</td>
<td>0.953</td>
<td></td>
</tr>
<tr>
<td>101 Armenia</td>
<td>1.225</td>
<td>1.784</td>
<td>1.448</td>
<td>1.221</td>
<td>0.854</td>
<td>0.596</td>
<td>1.114</td>
<td>0.606</td>
<td>0.947</td>
<td></td>
</tr>
<tr>
<td>102 Austria</td>
<td>0.653</td>
<td>0.703</td>
<td>1.511</td>
<td>1.016</td>
<td>1.524</td>
<td>0.639</td>
<td>0.749</td>
<td>0.850</td>
<td>0.996</td>
<td></td>
</tr>
<tr>
<td>103 Azerbaijan</td>
<td>1.784</td>
<td>1.098</td>
<td>1.482</td>
<td>1.580</td>
<td>1.488</td>
<td>0.610</td>
<td>0.628</td>
<td>0.641</td>
<td>0.954</td>
<td></td>
</tr>
<tr>
<td>104 Belarus</td>
<td>1.039</td>
<td>0.948</td>
<td>1.164</td>
<td>1.227</td>
<td>1.445</td>
<td>0.611</td>
<td>0.784</td>
<td>0.650</td>
<td>0.954</td>
<td></td>
</tr>
<tr>
<td>105 Belgium</td>
<td>0.615</td>
<td>0.649</td>
<td>1.481</td>
<td>0.864</td>
<td>1.397</td>
<td>0.648</td>
<td>0.634</td>
<td>0.820</td>
<td>0.977</td>
<td></td>
</tr>
<tr>
<td>106 Bosnia and Herzegovina</td>
<td>0.370</td>
<td>0.498</td>
<td>1.341</td>
<td>0.773</td>
<td>0.738</td>
<td>0.602</td>
<td>0.752</td>
<td>0.620</td>
<td>0.948</td>
<td></td>
</tr>
<tr>
<td>107 Bulgaria</td>
<td>0.951</td>
<td>1.168</td>
<td>1.432</td>
<td>1.562</td>
<td>1.479</td>
<td>0.609</td>
<td>0.804</td>
<td>0.665</td>
<td>0.958</td>
<td></td>
</tr>
<tr>
<td>108 Croatia</td>
<td>0.703</td>
<td>0.753</td>
<td>1.620</td>
<td>1.019</td>
<td>1.220</td>
<td>0.604</td>
<td>0.748</td>
<td>0.681</td>
<td>0.952</td>
<td></td>
</tr>
<tr>
<td>109 Cyprus</td>
<td>0.796</td>
<td>0.106</td>
<td>1.767</td>
<td>0.858</td>
<td>1.269</td>
<td>0.597</td>
<td>0.897</td>
<td>0.762</td>
<td>0.966</td>
<td></td>
</tr>
<tr>
<td>110 Czech Republic</td>
<td>0.771</td>
<td>0.928</td>
<td>1.505</td>
<td>1.389</td>
<td>1.784</td>
<td>0.632</td>
<td>0.771</td>
<td>0.745</td>
<td>1.010</td>
<td></td>
</tr>
<tr>
<td>111 Denmark</td>
<td>0.597</td>
<td>0.661</td>
<td>1.784</td>
<td>1.373</td>
<td>1.506</td>
<td>0.622</td>
<td>0.618</td>
<td>0.850</td>
<td>0.957</td>
<td></td>
</tr>
<tr>
<td>112 Estonia</td>
<td>0.812</td>
<td>0.936</td>
<td>1.326</td>
<td>1.784</td>
<td>1.462</td>
<td>0.598</td>
<td>0.895</td>
<td>0.725</td>
<td>0.953</td>
<td></td>
</tr>
</tbody>
</table>

DOI: 10.17261/Pressacademia.2020.1288

209
Grey relational degrees are determined by using the calculated Grey relational coefficients, and then the analysis ends up with the determination of the best ideal alternative and the rankings of Grey relational degrees. When the criteria have equal importance, Grey relational degrees are the arithmetic mean of grey relational coefficients of the criteria for each alternative.

Step 6. The Calculation of Grey Relational Degrees

Grey relational degrees are determined by using the calculated Grey relational coefficients, and then the analysis ends up with the determination of the best ideal alternative and the rankings of Grey relational degrees. When the criteria have equal importance, Grey relational degrees are the arithmetic mean of grey relational coefficients of the criteria for each alternative.

<table>
<thead>
<tr>
<th>Country</th>
<th>Grey Relational Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finland</td>
<td>0.632</td>
<td>0.622</td>
<td>1.685</td>
<td>1.116</td>
<td>1.289</td>
</tr>
<tr>
<td>France</td>
<td>0.595</td>
<td>0.595</td>
<td>1.514</td>
<td>0.877</td>
<td>1.202</td>
</tr>
<tr>
<td>Georgia</td>
<td>1.017</td>
<td>1.402</td>
<td>1.434</td>
<td>1.260</td>
<td>0.974</td>
</tr>
<tr>
<td>Germany</td>
<td>0.722</td>
<td>0.814</td>
<td>1.544</td>
<td>1.122</td>
<td>1.666</td>
</tr>
<tr>
<td>Greece</td>
<td>0.690</td>
<td>0.731</td>
<td>1.769</td>
<td>0.595</td>
<td>0.813</td>
</tr>
<tr>
<td>Hungary</td>
<td>0.718</td>
<td>0.751</td>
<td>1.401</td>
<td>1.049</td>
<td>1.633</td>
</tr>
<tr>
<td>Iceland</td>
<td>0.718</td>
<td>0.832</td>
<td>1.424</td>
<td>1.359</td>
<td>1.723</td>
</tr>
<tr>
<td>Ireland</td>
<td>1.131</td>
<td>1.660</td>
<td>1.783</td>
<td>1.080</td>
<td>1.445</td>
</tr>
<tr>
<td>Italy</td>
<td>0.644</td>
<td>0.711</td>
<td>1.670</td>
<td>0.739</td>
<td>1.147</td>
</tr>
<tr>
<td>Kosovo</td>
<td>1.110</td>
<td>1.528</td>
<td>1.708</td>
<td>1.619</td>
<td>0.595</td>
</tr>
<tr>
<td>Latvia</td>
<td>0.875</td>
<td>1.010</td>
<td>1.443</td>
<td>1.334</td>
<td>1.282</td>
</tr>
<tr>
<td>Lithuania</td>
<td>0.891</td>
<td>1.165</td>
<td>1.447</td>
<td>1.354</td>
<td>1.420</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>0.701</td>
<td>0.845</td>
<td>1.528</td>
<td>1.542</td>
<td>1.462</td>
</tr>
<tr>
<td>North Macedonia</td>
<td>1.024</td>
<td>1.306</td>
<td>1.628</td>
<td>1.313</td>
<td>0.754</td>
</tr>
<tr>
<td>Malta</td>
<td>0.819</td>
<td>1.040</td>
<td>1.576</td>
<td>1.251</td>
<td>1.543</td>
</tr>
<tr>
<td>Moldova</td>
<td>0.807</td>
<td>1.327</td>
<td>1.372</td>
<td>1.465</td>
<td>1.666</td>
</tr>
<tr>
<td>Montenegro</td>
<td>0.750</td>
<td>0.735</td>
<td>1.436</td>
<td>1.031</td>
<td>0.923</td>
</tr>
<tr>
<td>Netherlands</td>
<td>0.700</td>
<td>0.843</td>
<td>1.601</td>
<td>1.167</td>
<td>1.612</td>
</tr>
<tr>
<td>Norway</td>
<td>0.710</td>
<td>0.694</td>
<td>1.412</td>
<td>1.344</td>
<td>1.612</td>
</tr>
<tr>
<td>Poland</td>
<td>0.792</td>
<td>0.881</td>
<td>1.602</td>
<td>1.222</td>
<td>1.633</td>
</tr>
<tr>
<td>Portugal</td>
<td>0.775</td>
<td>0.793</td>
<td>1.685</td>
<td>0.778</td>
<td>1.351</td>
</tr>
<tr>
<td>Romania</td>
<td>1.054</td>
<td>1.285</td>
<td>1.188</td>
<td>1.346</td>
<td>1.572</td>
</tr>
<tr>
<td>Russia</td>
<td>1.073</td>
<td>1.114</td>
<td>1.396</td>
<td>1.672</td>
<td>1.533</td>
</tr>
<tr>
<td>Serbia</td>
<td>0.748</td>
<td>0.892</td>
<td>1.538</td>
<td>1.167</td>
<td>0.997</td>
</tr>
<tr>
<td>Slovakia</td>
<td>0.814</td>
<td>0.897</td>
<td>1.448</td>
<td>1.217</td>
<td>1.359</td>
</tr>
<tr>
<td>Slovenia</td>
<td>0.750</td>
<td>0.821</td>
<td>1.576</td>
<td>1.056</td>
<td>1.462</td>
</tr>
<tr>
<td>Spain</td>
<td>0.796</td>
<td>0.875</td>
<td>1.588</td>
<td>0.885</td>
<td>0.923</td>
</tr>
<tr>
<td>Sweden</td>
<td>0.622</td>
<td>0.695</td>
<td>1.525</td>
<td>1.318</td>
<td>1.389</td>
</tr>
<tr>
<td>Switzerland</td>
<td>0.927</td>
<td>1.148</td>
<td>1.734</td>
<td>1.302</td>
<td>1.515</td>
</tr>
<tr>
<td>Turkey</td>
<td>1.046</td>
<td>1.121</td>
<td>0.595</td>
<td>1.439</td>
<td>1.112</td>
</tr>
<tr>
<td>Ukraine</td>
<td>0.786</td>
<td>0.863</td>
<td>0.772</td>
<td>1.090</td>
<td>1.191</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>0.805</td>
<td>0.889</td>
<td>1.455</td>
<td>0.939</td>
<td>1.602</td>
</tr>
</tbody>
</table>

Δ_{MAX} = 1,000

Δ_{MN} = 0.392

ζ = 0.5
The calculations related to the above may be seen in Table 6. For this, the formula =AVERAGE(M100:U100) is written to V100 line. For the ranking of countries’ performances, the formula =RANK (V100;V100:V144;0) is written to W100 line.

Table 6: Grey Relational Degrees and Their Alternative Gradation

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>M</th>
<th>N</th>
<th>O</th>
<th>P</th>
<th>Q</th>
<th>R</th>
<th>S</th>
<th>T</th>
<th>U</th>
<th>V</th>
<th>W</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>99</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>Albania</td>
<td>1.02</td>
<td>1.44</td>
<td>1.53</td>
<td>1.06</td>
<td>0.98</td>
<td>0.60</td>
<td>0.94</td>
<td>0.62</td>
<td>0.95</td>
<td>1.01</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>Armenia</td>
<td>1.23</td>
<td>1.78</td>
<td>1.45</td>
<td>1.22</td>
<td>0.85</td>
<td>0.60</td>
<td>1.11</td>
<td>0.61</td>
<td>0.95</td>
<td>1.09</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>Austria</td>
<td>0.65</td>
<td>0.70</td>
<td>1.51</td>
<td>1.02</td>
<td>1.52</td>
<td>0.64</td>
<td>0.75</td>
<td>0.85</td>
<td>1.00</td>
<td>0.96</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>Azerbaijan</td>
<td>1.78</td>
<td>1.10</td>
<td>1.48</td>
<td>1.58</td>
<td>1.49</td>
<td>0.61</td>
<td>0.63</td>
<td>0.64</td>
<td>0.95</td>
<td>1.14</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>Belarus</td>
<td>1.04</td>
<td>0.95</td>
<td>1.16</td>
<td>1.23</td>
<td>1.44</td>
<td>0.61</td>
<td>0.78</td>
<td>0.65</td>
<td>0.95</td>
<td>0.98</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>Belgium</td>
<td>0.61</td>
<td>0.65</td>
<td>1.48</td>
<td>0.86</td>
<td>1.40</td>
<td>0.65</td>
<td>0.63</td>
<td>0.82</td>
<td>0.98</td>
<td>0.90</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>Bosnia and Herzegovina</td>
<td>0.71</td>
<td>0.89</td>
<td>1.65</td>
<td>1.34</td>
<td>0.77</td>
<td>0.60</td>
<td>0.79</td>
<td>0.62</td>
<td>0.95</td>
<td>0.92</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>Bulgaria</td>
<td>0.95</td>
<td>1.17</td>
<td>1.43</td>
<td>1.56</td>
<td>1.48</td>
<td>0.61</td>
<td>0.80</td>
<td>0.67</td>
<td>0.96</td>
<td>1.07</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>Croatia</td>
<td>0.70</td>
<td>0.75</td>
<td>1.62</td>
<td>1.02</td>
<td>1.22</td>
<td>0.60</td>
<td>0.75</td>
<td>0.68</td>
<td>0.95</td>
<td>0.92</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>Cyprus</td>
<td>0.80</td>
<td>1.02</td>
<td>1.77</td>
<td>0.86</td>
<td>1.27</td>
<td>0.60</td>
<td>0.90</td>
<td>0.76</td>
<td>0.97</td>
<td>0.99</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>Czech Republic</td>
<td>0.77</td>
<td>0.93</td>
<td>1.51</td>
<td>1.39</td>
<td>1.78</td>
<td>0.63</td>
<td>0.77</td>
<td>0.74</td>
<td>1.01</td>
<td>1.06</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>Denmark</td>
<td>0.60</td>
<td>0.66</td>
<td>1.78</td>
<td>1.37</td>
<td>1.51</td>
<td>0.62</td>
<td>0.62</td>
<td>0.85</td>
<td>0.96</td>
<td>1.00</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>Estonia</td>
<td>0.81</td>
<td>0.94</td>
<td>1.33</td>
<td>1.78</td>
<td>1.46</td>
<td>0.60</td>
<td>0.89</td>
<td>0.73</td>
<td>0.95</td>
<td>1.05</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>Finland</td>
<td>0.63</td>
<td>0.62</td>
<td>1.68</td>
<td>1.12</td>
<td>1.29</td>
<td>0.62</td>
<td>0.72</td>
<td>0.81</td>
<td>0.95</td>
<td>0.94</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>France</td>
<td>0.59</td>
<td>0.59</td>
<td>1.51</td>
<td>0.88</td>
<td>1.20</td>
<td>1.09</td>
<td>0.64</td>
<td>0.80</td>
<td>1.26</td>
<td>0.95</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>Georgia</td>
<td>1.02</td>
<td>1.40</td>
<td>1.43</td>
<td>1.26</td>
<td>0.97</td>
<td>0.60</td>
<td>1.04</td>
<td>0.61</td>
<td>0.95</td>
<td>1.03</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>Germany</td>
<td>0.72</td>
<td>0.81</td>
<td>1.54</td>
<td>1.12</td>
<td>1.67</td>
<td>1.78</td>
<td>0.64</td>
<td>0.85</td>
<td>1.14</td>
<td>1.14</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>Greece</td>
<td>0.69</td>
<td>0.73</td>
<td>1.77</td>
<td>0.59</td>
<td>0.81</td>
<td>0.62</td>
<td>0.69</td>
<td>0.70</td>
<td>0.97</td>
<td>0.84</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>118</td>
<td>Hungary</td>
<td>0.72</td>
<td>0.75</td>
<td>1.40</td>
<td>1.05</td>
<td>1.63</td>
<td>0.62</td>
<td>1.09</td>
<td>0.71</td>
<td>0.99</td>
<td>1.00</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>Iceland</td>
<td>0.72</td>
<td>0.83</td>
<td>1.42</td>
<td>1.36</td>
<td>1.72</td>
<td>0.60</td>
<td>1.02</td>
<td>0.88</td>
<td>0.94</td>
<td>1.06</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>Ireland</td>
<td>1.13</td>
<td>1.66</td>
<td>1.78</td>
<td>1.08</td>
<td>1.44</td>
<td>0.63</td>
<td>1.78</td>
<td>1.14</td>
<td>0.65</td>
<td>1.26</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>Italy</td>
<td>0.64</td>
<td>0.71</td>
<td>1.67</td>
<td>0.74</td>
<td>1.15</td>
<td>0.94</td>
<td>0.59</td>
<td>0.76</td>
<td>1.13</td>
<td>0.93</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>Kosovo</td>
<td>1.11</td>
<td>1.53</td>
<td>1.71</td>
<td>1.62</td>
<td>0.59</td>
<td>0.60</td>
<td>0.92</td>
<td>0.61</td>
<td>0.97</td>
<td>1.07</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>Latvia</td>
<td>0.87</td>
<td>1.01</td>
<td>1.44</td>
<td>1.33</td>
<td>1.28</td>
<td>0.60</td>
<td>1.06</td>
<td>0.70</td>
<td>0.95</td>
<td>1.03</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>Lithuania</td>
<td>0.89</td>
<td>1.16</td>
<td>1.45</td>
<td>1.35</td>
<td>1.42</td>
<td>0.60</td>
<td>0.84</td>
<td>0.73</td>
<td>0.95</td>
<td>1.04</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>Luxembourg</td>
<td>0.70</td>
<td>0.84</td>
<td>1.53</td>
<td>1.54</td>
<td>1.46</td>
<td>0.60</td>
<td>0.78</td>
<td>1.78</td>
<td>0.91</td>
<td>1.13</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>North Macedonia</td>
<td>1.02</td>
<td>1.31</td>
<td>1.63</td>
<td>1.31</td>
<td>0.75</td>
<td>0.60</td>
<td>0.74</td>
<td>0.63</td>
<td>0.95</td>
<td>0.99</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>Malta</td>
<td>0.82</td>
<td>1.04</td>
<td>1.58</td>
<td>1.25</td>
<td>1.54</td>
<td>0.60</td>
<td>1.56</td>
<td>0.80</td>
<td>0.97</td>
<td>1.13</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>Moldova</td>
<td>0.81</td>
<td>1.33</td>
<td>1.37</td>
<td>1.47</td>
<td>1.67</td>
<td>0.60</td>
<td>0.92</td>
<td>0.59</td>
<td>0.95</td>
<td>1.08</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>Montenegro</td>
<td>0.75</td>
<td>0.73</td>
<td>1.44</td>
<td>1.03</td>
<td>0.92</td>
<td>0.59</td>
<td>1.00</td>
<td>0.65</td>
<td>0.95</td>
<td>0.90</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>Netherlands</td>
<td>0.70</td>
<td>0.84</td>
<td>1.60</td>
<td>1.17</td>
<td>1.61</td>
<td>0.70</td>
<td>0.73</td>
<td>0.89</td>
<td>1.78</td>
<td>1.11</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>131</td>
<td>Norway</td>
<td>0.71</td>
<td>0.69</td>
<td>1.41</td>
<td>1.34</td>
<td>1.61</td>
<td>0.63</td>
<td>0.63</td>
<td>1.08</td>
<td>0.84</td>
<td>1.00</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>132</td>
<td>Poland</td>
<td>0.79</td>
<td>0.88</td>
<td>1.60</td>
<td>1.22</td>
<td>1.63</td>
<td>0.73</td>
<td>1.13</td>
<td>0.71</td>
<td>1.02</td>
<td>1.08</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>133</td>
<td>Portugal</td>
<td>0.78</td>
<td>0.79</td>
<td>1.69</td>
<td>0.78</td>
<td>1.35</td>
<td>0.63</td>
<td>0.69</td>
<td>0.71</td>
<td>0.98</td>
<td>0.93</td>
<td>38</td>
<td></td>
</tr>
</tbody>
</table>
Two important results were obtained from this study. The first one is the presentation of the application of the Grey relational analysis (GRA) method. The solution of the GRA method consists of six steps, the determination of a decision matrix, the formation of a reference series and a comparison matrix, the realization of the normalization process, the calculation of the Grey relational coefficient matrix, and, finally, creating a Grey relational analysis (GRA) model.

The second one is knowledge of the economic performances of the European countries. Based on this, it was seen that the ten countries with the most successful macroeconomic performance are Ireland, Russia, Germany, Azerbaijan, Malta, Luxembourg, Netherlands, United Kingdom, Armenia, and Poland, respectively. Conversely, it was found that the ten countries with the lowest economic performance are France, Serbia, Finland, Portugal, Italy, Bosnia and Herzegovina, Croatia, Belgium, Montenegro, Ukraine, and Greece, respectively. The ranking of Turkey was thirty-three among forty-four countries.

In Table 6, it may be seen that the ten countries that have the most successful macroeconomic performance are Ireland, Russia, Germany, Azerbaijan, Malta, Luxembourg, Netherlands, United Kingdom, Armenia and Poland, respectively. Conversely, the ten countries which have the lowest macroeconomic performance were determined as France, Serbia, Finland, Portugal, Italy, Bosnia and Herzegovina, Croatia, Belgium, Montenegro, Ukraine and Greece, respectively. The ranking of Turkey was thirty-three among forty-four countries.

Nine evaluation criteria that can affect the economic performances of the countries were used. Each of these criteria, actually, is a risk factor. This risk is divided into two categories, basically. The first is systematic risk which can be defined as the risk factors the whole market is exposed to. The effects of these risk factors can be reduced, but it is not possible to eliminate it totally. The second is nonsystematic risk which is the risk factors in relation with the country itself. Unlike the first one, this risk factor can be eliminated completely. The possible changes in these risk factors will change the macroeconomic performances of the countries.

5. CONCLUSION

Two important results were obtained from this study. The first one is the presentation of the application of the Grey relational analysis (GRA) method. The solution of the GRA method consists of six steps, the determination of a decision matrix, the formation of a reference series and a comparison matrix, the realization of the normalization process, the acquisition of the absolute value table, the calculation of the Grey relational coefficient matrix, and, finally, creating Grey relational degrees and making the alternative rankings.

The second one is knowledge of the economic performances of the European countries. Based on this, it was seen that the ten countries with the most successful macroeconomic performance are Ireland, Russia, Germany, Azerbaijan, Malta, Luxembourg, Netherlands, United Kingdom, Armenia, and Poland, respectively. Conversely, it was found that the ten countries with the lowest economic performance are France, Serbia, Finland, Portugal, Italy, Bosnia and Herzegovina, Croatia, Belgium, Montenegro, Ukraine, and Greece, respectively.

The ranking of Turkey was thirty-three among forty-four countries. These rankings change depending upon the possible variance in the values of the used criteria.

REFERENCES

DOI: 10.17261/Pressacademia.2020.1288

BANK CREDITS AND RENT-PRICE RELATION: AN INTERPRETATION ON THE ROLES OF CREDITS IN ECONOMY AND TIME SERIES ANALYSIS WITH STRUCTURAL BREAK

DOI: 10.17261/Pressacademia.2020.1289
JEFA- V.7-ISS.3-2020(2)-p.214-222

Esat Dasdemir
Istanbul Gelisim University, Department of Foreign Trade, Istanbul, Turkey.
edasdemir@gelisim.edu.tr, ORCID: 0000-0001-8950-2020

Date Received: April 4, 2020 Date Accepted: August 30, 2020

To cite this document

Permanent link to this document: http://doi.org/10.17261/Pressacademia.2020.1289
Copyright: Published by PressAcademia and limited re-use rights only.

ABSTRACT

Purpose- This study argues that interest rate and credit usage will affect rents negatively but prices positively. The study; aims to test, explain, interpret the effect of interest rates on these two variables and offer appropriate policy recommendations.

Methodology- Theory tested on the US housing market with the structural break time series analysis between 2005Q1-2020Q1. Least squares (LS) and Newey-West estimators used, and the interpreted output was the Newey-West estimator.

Findings- According to the results reached, the increase in mortgage interest rates for the 2005Q1-2009Q1 and 2011Q4-2020Q1 period decreases the housing rent / price ratio. For the 2009Q2-2011Q3 period, in which the effects of the 2008 Global Financial Crisis are observed in the model, this relationship is observed positively.

Conclusion- As a result of the predicted model, the impact of credit usage on other economic factors evaluated. Credit usage and interest rates have different effects on prices and rents. This is explained by the substitution relationship between rental and purchase. The study states that interest rates should be evaluated as a tool to balance rents and prices. The study contributes to the literature by revealing the accuracy of this supervisory power attributed to interest rates and bank loans.

Keywords: Credit usage lease and purchase relationship, rent-price relationship, financial system, effect of interest rate on rent and price

JEL Codes: E51, G10, H81

ECONOMY AND TIME SERIES ANALYSIS WITH STRUCTURAL BREAK

BANKA KREDİLERİ VE KİRA-FİYAT İLİŞKİSİ: KREDİLERİN EKONOMİDEKİ ROLLERİ ÜZERİNE BİR YORUM VE YAPISAL KIRILMALI ZAMAN SERİLERİ ANALİZİ

ÖZET

Amaç- Bu çalışma faiz ve kredi kullanımının kiralardaki olumsuz yönde etkileyicisi, ancak fiyatları olumlu etkileyeceliğini savunnmaktadır. Çalışma; faiz oranlarının bu iki değişkenle etkisi test etmek, açıklamak, yorumlamak ve uygulan politika önerisi sunmayı amaçlamaktadır.

 Anahtar Kelimeler: Kredi kullanımı kiralama ve satın alma ilişkisi, kira-fiyat ilişkisi, finansal sistem, faiz oranının fiyat ve kiralara etkisi

JEL Kodları: E51, G10, H81

DOI: 10.17261/Pressacademia.2020.1289
1. GİRİŞ

Oluşan bir ekonomide fiyat ve kiraların doğrusal hareket etmesi gerekmektedir. Olsa bu çalışmaya göre faizler ve banka kredileri fiyatlar üzerinde doğrusal, kiralar üzerinde ters yönlü etkide bulunmak yoluyla söz konusu beklenti kırılmaktadır. Bu çalışma ilk önce türlerine göre banka kredilerinin piyasaya etiketleme değişimi ardından biyorelerin kredi kullanma nedenlerinden yola çıkıp kredi kullanımın sonucunda varlık fiyat ve kiralarının ne gibi bir tepki vereceğini analiz ederek söz konusu durumu sistemik bir kanuna dönüşülmeyi amaçlamaktadır.

Çalışmanın sonucu ve önerilerini bu nedenle faiz ve banka kredilerinin politika yapıcı tarafındaki doğru biçimde ve daha etkin bir araç olarak kullanılması önemini düşürmektedir. Kredi maliyetlerinin vadelere göre ayrılanların değerendirilmesi ekonomiye pek çok iktisadi amaca ulaşılabilir ve buna uygulama olacaktır. Bu iktisadi amaçlardan bazıları; yatırımın yapımını artırmak, sanayinin gelişmesi, işsizlik kapasitesini maliyetlerin artılmayan sektörlerdeki baskının azaltılması, düşük ölçekli üretim yapmayı sınırlayarak maliyetlerin sonucunda sektörlerde üretim artırmaktır.

2. BANKA KREDİLERİ

Finans ve bankacılık kesiminin piyasa içindeki rolü daha somut bir söylemle şu biçimde açıklanabilirdir: Finansal sistem, verimlilik üzerine ciddi ölçüde etkisi bulunmaktadır. Yalnız, finansal piyasalar, fon aktarım yoluyla ekonomik etkinliği artırma amacıyla kullanılan bir araçtır. Özellikle gelişmekte olan ülkelerde kıt ve etkin kullanılamayan girişimcilik faktörünün etkisi üzerindeki etkileri; özellikle_game_variable_1, game_variable_2, game_variable_3 ve game_variable_4 ile açıklanmıştır. King ve Levine’nin vurguladığı gibi, finansal sistem, verimlilik üzerine ciddi ölçüde etkisi bulunmaktadır. Yalnız, finansal piyasalar, fon aktarım yoluyla ekonomik etkinliği artırma amacıyla kullanılan bir araçtır. Özellikle gelişmekte olan ülkelerde kıt ve etkin kullanılamayan girişimcilik faktörünün etkisi üzerindeki etkileri; özellikle_game_variable_1, game_variable_2, game_variable_3 ve game_variable_4 ile açıklanmıştır.
2.1. Tüketici Kredisi

2.2. Ticari Krediler

2.3. Banka Kredileri Üzerine Politika Önerileri

Bu çalışma banka kredileri ve onun alt türevlerine yönelik politikalara ve bu biçimde olması gerekliliğini belirtmektedir;

- Banka kredileri ve onun alt türevlerine yönelik politikalara ve bu biçimde olması gerekliliğini belirtmektedir.
- Tüketici kredilerine yönelik politikalara ve bu biçimde olması gerekliliğini belirtmektedir.
- Ticari kredilerine yönelik politikalara ve bu biçimde olması gerekliliğini belirtmektedir.

Öte yandan Türkiye Ekonomisi için banka kredileri üzerine planlı bir politika izlenmediği ve piyasa üzerinde önemli etkileri bulunan bu aracın kontrolünü piyasaya birlikte etmek zorunda kalmaktadır. Bu durum, Türkiye Ekonomisi için banka kredileri üzerine planlı bir politika izlenmediği ve piyasa üzerinde önemli etkileri bulunan bu aracın kontrolünü piyasaya birlikte etmek zorunda kalmaktadır. Bu durum, Türkiye Ekonomisi için banka kredileri üzerine planlı bir politika izlenmediği ve piyasa üzerinde önemli etkileri bulunan bu aracın kontrolünü piyasaya birlikte etmek zorunda kalmaktadır.
3. FİYAT-KİRA YAKLAŞIMI: KREDİ KULLANIMI SONRASI FİYAT VE KİRA İLİŞKİSİ ÜZERİNE

Bu çalışma faiz, kira ve fiyat ilişkisini açıklamaktadır. Birçok bir varlığın piyasası, herhangi bir icatı için uygulanan bir borçlanma koşullarını kullanır. Para politikaları banka mevduatlarını, banka mevduatları ise banka kredileri yoluyla konut talebini etkilemektedir (Mishkin, 2001, s. 653). Dolayısıyla, günümüzde en yaygın borçlanma aracı olan banka kredileri; bireylerin ve firmaların alacakları satın alma ya da kiralama kararları üzerinde güçlü bir belirleyici olabilir.

Özel durumlar görmektedir, rasyonel tüketicilerin kredi alarak faiz karşılığına katılma durumu, ancak kira masrafından kaçınmak için yapılarak bir işletimdir. Diğer bir deyişle rasyonel davranan tüketiciler kira ödemek için değil, varlığın iyiliğini satın almak için kredi kullanacaklardır. Bununla birlikte, rasyonel davranan tüketiciler kiralara birikme olasılığına karşı, faiz maliyetlerini ödemek için kredi kullanmayacaklardır. Bu durum, tüketici; bir varlığın kirası, o varlığın değerindeki artış ve faiz maliyetlerini toplamından küçükse kiralama kararını verir.

3.1. Üretim Etkisi

Sözel gelimi, ekonomide konut kredilerindeki bir düşüş, konut talebini ve dolaysıyla fiyat ve üretimi artıracak ve konut satışlarından artış konularını düşürecektir. Diğer değişkenler sabitken, bu iki seçeneğin birini seçir, öbürünün talebini düşürebilir. Dolayısıyla, bu ikameliğin kirası ile faiz ve fiyat arasındaki ters yönlü bir bağlılita neden olacağını söylemek mümkündür.

3.2. İkame İlişkisi

Daha önce vurgulandığı üzere rasyonel birey, ancak kira maliyetinden kurtulmak için faiz giderine katlanacaktır. Bu durumda, bireyin belirli bir varlığınインド kira ödemek için kredi kullanmayı tercih etmesi, kira artışının o dönemdeki faiz oranında artışa neden olacağını söylemek mümkündür. Diğer değişkenler sabitken, bu iki seçeneğin birini seçer, öbürünün talebini düşürebilir. Dolayısıyla, bu ikameliğin kirası ile faiz ve fiyat arasındaki ters yönlü bir bağlılita neden olacağını söylemek mümkündür.

4. MODEL VE YöNTEM

Tablo 1: Değişkenlerin Tanımı

<table>
<thead>
<tr>
<th>Değişken</th>
<th>Tanım</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>Mortgage faiz oranı (ABD ortalaması)</td>
</tr>
<tr>
<td>KF</td>
<td>ABD konut kira endeksinin konut fiyat endeksine oranı</td>
</tr>
</tbody>
</table>
Tahmin edilmek istenen model aşağıdaki gibidir:

\[\Delta LKF_t = \beta_0 - \beta_1 \Delta LR_t + \beta_2 k \Delta LR_t + \omega_t \]

(1)

Modelde değişkenlerin adlarına eklenen "L" göstergesi değişkenin logaritmasının alındığını, "\(\Delta \)" göstergesi serinin türevinin alındığını belirtmektedir. "k \(\Delta LR_t \)" değişkeni logaritması ve ardından türevi alınmış "R" değişkenini için kurulan kula değişkeni ifade eder. "\(\beta_0 \)" sabit katsayı, "\(\beta_1 \)" ve "\(\beta_2 \)" önlerinde bulundukları değişkenlerin katsaylarını, "\(\omega_t \)" ise kalıntıları ifade etmektedir. Model ve ilgili testler Stata 16 Paket Programı ile tahmin edilmiştir.

4.1. Birim Kök Testi Sonuçları

Tablo 2: ADF Birim Kök Testleri

<table>
<thead>
<tr>
<th>Test</th>
<th>LKF</th>
<th>Li</th>
</tr>
</thead>
<tbody>
<tr>
<td>Düzey</td>
<td>0.5779</td>
<td>0.7666</td>
</tr>
<tr>
<td>Birinci Geçikme</td>
<td>0.2659</td>
<td>0.6950</td>
</tr>
<tr>
<td>Birinci Fark</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Düzey</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>Birinci Geçikme</td>
<td>0.0000</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

4.2. Yapısal Kırılmanın Tespiti ve Kukla Değişken Sonrası Elde Edilen Model

Şekil 1: Yapısal Kırılmanın Grafik Üzerinde Gösterimi

Şekil 1'den görüleceği üzere, yapısal kırılma bir dönem yaşanıktan sonra, tekrar düzeye sine geri dönmektedir. 2008 Krizi sonrası 2009'un ilk çeyreğinde kendini somut olarak gösteren yapısal kırmanın çözümü için kula değişkenler türetilek ideal model tespit edilme istenmiştir. Hem sabit parametrede (\(\beta_0 \)), hem de \(\Delta LR \) değişkeni parametresi üzerindeki yapısal kırılma etkisini ölçmek maksadıyla modele iki kula değişken eklenmiş, bunlardan \(\beta_0 \) için türetilen kula değişkenin anlamsız çıkmışa üzerine modelden çıkarılmıştır. \(\beta_0 \) için kurulan kula değişken (KU) 2019 2. Çeyreği ile 2011 3. Çeyrek arası için 1, diğer dönemler için 0 şeklinde kurulmuştur. \(\Delta LR \) kula değişkeni olan k \(\Delta LR \) ise \(\Delta LR \) değişkeninin KU değişkeni ile çarpımı sonucu oluşturulmuştur. Yalnızca \(k \times \Delta LR \) kula değişkeni eklediğinde yapısal kırılma sorunu çözülmüştür. Yapısal kırmanın çözüldüğü Şekil 2'de görülmektedir.
4.3. Varsayımdan Sapmalar ve Düzeltilmesi

Tahmin edilen modelin varsayımdan sapmalarının tespiti için yapılan testler ve sonuçları aşağıda verilmiştir.

<table>
<thead>
<tr>
<th>Test</th>
<th>P Değeri</th>
<th>Sonuç</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Dağılım</td>
<td>0,89</td>
<td>Boş hipotez reddedilememiştir.</td>
</tr>
<tr>
<td>Skewness/Kurtosis</td>
<td>0,84</td>
<td>Kalıntılar normal dağılmaktadır.</td>
</tr>
<tr>
<td>Heterokedasite</td>
<td>0,11</td>
<td>Boş hipotez reddedilememiştir.</td>
</tr>
<tr>
<td>White (1980)</td>
<td>0,52</td>
<td></td>
</tr>
<tr>
<td>Otokorelasyon</td>
<td>0,00</td>
<td>Boş hipotez reddedilmiştir. Otokorelasyon sorunu vardır.</td>
</tr>
<tr>
<td>Durbin-Watson (1950)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breusch (1978) - Godfrey (1978)</td>
<td>0,00</td>
<td></td>
</tr>
</tbody>
</table>

Newey-West tahmincisinde kullanılan maksimum gecikmenin belirlenmesi için gecikme düzeylerine göre otokorelasyon testleri yapılmış ve 42. gecikmeden sonra otokorelasyon sorunu olmadığı analiz edilmiştir. Dolayısıyla Newey-West tahmincisi için kullanılan maksimum gecikme 42 olarak seçilmiştir.

4.4. Modelin Tahmini

Modelin tahmin çıktıları aşağıdaki gibidir.

<table>
<thead>
<tr>
<th>Yöntem</th>
<th>Gösterge</th>
<th>Sabit katsayı</th>
<th>△ LR</th>
<th>k △ LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>En Küçük Kareler (EKK)</td>
<td>Katsayı</td>
<td>0,0037</td>
<td>-0,1579</td>
<td>0,2218</td>
</tr>
<tr>
<td></td>
<td>Standart Hata</td>
<td>0,0029</td>
<td>0,0594</td>
<td>0,1240</td>
</tr>
<tr>
<td></td>
<td>t Değeri</td>
<td>1,25</td>
<td>-2,66</td>
<td>1,79</td>
</tr>
<tr>
<td></td>
<td>P Değeri</td>
<td>0,217</td>
<td>0,010</td>
<td>0,079</td>
</tr>
<tr>
<td>Newey-West (Maksimum Gecikme 42)</td>
<td>Katsayı</td>
<td>0,0037</td>
<td>-0,1579</td>
<td>0,2218</td>
</tr>
<tr>
<td></td>
<td>Standart Hata</td>
<td>0,0043</td>
<td>0,0780</td>
<td>0,1214</td>
</tr>
<tr>
<td></td>
<td>t Değeri</td>
<td>0,84</td>
<td>-2,02</td>
<td>1,83</td>
</tr>
<tr>
<td></td>
<td>P Değeri</td>
<td>0,402</td>
<td>0,048</td>
<td>0,073</td>
</tr>
</tbody>
</table>

Tahmin çıktılarına göre her iki yönteme de sabit katsayı anlamlsızken, △ LR katsayısi %5 hata payı ile k △ LR katsayısı %10 hata payı ile anlamlıdır. Newey-West tahmincisinde F testi %10 hata payı ile anlamlıken, klasik EKK yöntemi yapılan tahminde R-kare değeri yaklaşık 0,12 ve F testi %5 ile anlamlıdır. Çıktı sonuçlarına istinaden tahmin edilen modeller aşağıda verilmiştir.
Tahmin edilen genel model;
\[\Delta LK_{F1} = 1,00 - 0,16 \Delta LR_t + 0,22 k \Delta LR_t \]
(2)
2005Ç1-2009Ç1 ve 2011Ç4-2020Ç1 dönem için geçerli tahmin;
\[\Delta LK_{F1} = 1,00 - 0,16 \Delta LR_t + 0,22 k \Delta LR_t \]
(3)
2009Ç2-2011Ç3 dönemi için geçerli tahmin;
\[\Delta LK_{F1} = 1,00 + 0,06 \Delta LR_t \]
(4)

Belirtmek gerek ki, anlamamsız olan sabit katsayıların denklemde kullanıldığı hali, bağımlı değişkenin e tabanında logaritma olması ile ilgili olmaktır. Kriz sonrası kira/fiyat oranının faiz oranları ile ilişkisinin bu yönlü değişmesi dikkat çekicidir.

Çalışma içerisinde soyut biçimde işlenen kredi kullanımının fiyat ve kiralara etkisi, ABD konut piyasasında yapılan analiz ile ekonomik olarak ölçülmuştur. Sonuçlar bekenilen yönde ve anlaşılmıdır. Tahmin sonucu 2005Ç1-2009Ç1 ve 2011Ç4-2020Ç1 dönemi için ABD’de %1’lik mortgage faiz oranının artması kira/fiyat oranını %0,16 oranında azaltmaktadır. Yapisal krizin geçerli olduğu 2009Ç2-2011Ç3 dönemi için ise mortgage faiz oranındaki %1’lik artış, kira/fiyat oranının %0,06 oranında arttırmaktadır. Kriz sonrası kira/fiyat oranının faiz oranları ile ilişkinin bu yönü değişmesi dikkat çekicidir. Çalışma bu sonuçlar doğrultusunda politika yapıcıda işk olmalıdır.

REFERENCES

DOI: 10.17261/Pressacademia.2020.1289 221

DOI: 10.17261/Pressacademia.2020.1289

222
THE DETERMINING FACTORS OF FINANCIAL INCLUSION IN TURKEY

DOI: 10.17261/Pressacademia.2020.1290
JEFA- V.7-ISS.3-2020(3)-p.223-235

Hasmet Sarigul
Istanbul Esenyurt University, Faculty of Business and Management Sciences, Istanbul, Turkey.
hasnetsar@yahoo.com , ORCID: 0000-0001-7262-6668

Date Received: July 6, 2020
Date Accepted: September 5, 2020

To cite this document
Permanent link to this document: http://doi.org/10.17261/Pressacademia.2020.1290
Copyright: Published by PressAcademia and limited licensed re-use rights only.

ABSTRACT

Purpose- The purpose of this study is to investigate the impacts of GDP per capita, unemployment rate, cost of living index, gini coefficient, median age, urbanization rate, total length of railways and roads, number of road motor vehicles, number of mobile phone subscribers, number of broadband internet subscribers, literacy rate and mean years of schooling on financial inclusion in Turkey.

Methodology- The models were estimated using the Johansen Cointegration method, and the causality relationships between the variables were tested with the Granger and Toda-Yamamoto approaches.

Findings- The Johansen approach findings reveal a significantly positive long–run co–movement between financial inclusion and GDP per capita, urbanization and a significantly negative long–run co–movement between cost of living and financial inclusion. However, according to the results of the Granger method, there has been no causality relationship between the variables. The results of the Toda–Yamamoto causality test are consistent with the results of the Granger causality test, except for the urbanization variable which has been found to have a short term causal effect on financial inclusion in the Toda–Yamamoto test.

Conclusion- The significant relationship between the level of financial inclusion and the rate of urbanization in the short and long run reveals that the increase in the level of urbanization causes individuals to access financial institutions more easily and be able to use more financial products in Turkey.

Keywords: Financial inclusion, time series, cointegration, causality, Turkey.

JEL Codes: C32, D14, G20

1. INTRODUCTION

Although financial inclusion is a widely discussed issue in finance literature, it does not have a common definition due to its multidimensional nature and various different approaches. However, it refers to the situation in where individuals can effectively access financial services and use financial products. Broadly, financial inclusion can be defined as the existence of a financial system that enables weaker and disadvantaged individuals of the society to have access to and be able to use these financial services.

The factors affecting the level of financial inclusion may arise from supply and demand. Socio-economic factors and individuals' perceptions and attitudes on financial issues are supply-side factors. Lack of financial services, in other words financial exclusion, may occur voluntarily or involuntarily. Voluntary financial exclusion may be due to cultural or religious factors, or due to the indifference individuals may have towards financial services. Involuntarily exclusion includes obstacles such as not having trust in financial institutions, inappropriate prices, maturity of the product, product design that does not meet the needs, and failure to meet other eligibility criteria. The demand-side factors include socio-economic and technological factors such as income, education level, age, gender, transportation and telecommunication facilities (Abel, Mutandwa and Le Roux, 2018; Demirgüç–Kunt, Klapper, Singer and Van Oudheusden, 2015; Dittus and Klein, 2011; European Commission, 2008).

Economic factors are considered as one of the major determinants of financial inclusion. Many studies reveal that financial inclusion is positively related to economic development and the factors such as unemployment, poverty, and income
inequality negatively impact the access to and use of financial services (Bittencourt 2012; Jeanneney and Kpodar 2011; Pal and Vaidya 2011; Clarke, Xu and Zhou 2006). Socio-demographic factors can play an important role in strengthening financial inclusion. In societies where socio-demographic factors do not support financial inclusion, individuals are more likely to avoid using financial services, fewer people have bank accounts, and cash transactions widespread. These situations impact the demand side of financial inclusion (Cull, Ehrbeck and Holle, 2014; Dev, 2006). Another factor that influences financial inclusion is technology. The financial services industry is one of the sectors that supports technological innovation and also puts them into practice. Innovative financial service companies create and develop digital platforms to make their customers’ daily transactions more cost-effective, faster and easier. Technological developments reduce the need to travel long distances, and ensure the efficient distribution of financial products and services. Electronic payment systems, mobile banking, and other fintech applications are becoming more widespread, so financial inclusion is able to improve with a new and wide-ranging stakeholder group from the digital world (Global Partnership for Financial Inclusion 2014; De Koker and Jentzsch 2013; Duncombe and Boateng 2009).

Due to the belief of its positive impacts on financial systems and the economy, financial inclusion issues have recently been gaining more attention among researchers, policy makers and practitioners. In many countries, studies have been carried out by financial institutions, governments and non-governmental organizations to develop strategies that may enable low-income and disadvantaged groups to be better included in the financial system. These efforts have also been supported by international financial and economic institutions such as the International Monetary Fund and the World Bank (Demirgüç-Kunt, Beck and Honohan, 2008; Kempson, Atkinson and Pilley, 2004; Leyshton and Thirft, 1995). In Turkey, “Financial Access, Financial Education, Consumer Financial Protection Strategy and Action Plans” were put into practice in 2014 aiming to strengthen the demand side of financial inclusion by considering the indicators of financial access and the financial infrastructure (Prime Ministry of Turkey, 2014). Within this scope, a total of 55 action plans have been determined in the fields of financial education and financial consumer protection. In addition, many public institutions, autonomous institutions and non-governmental organizations have been identified for collaboration. Understanding the linkage between financial inclusion and economic, social, demographic and other issues will be beneficial to policy makers and practitioners in their efforts to strengthen financial inclusion in the country. However, there have been few academic studies conducted on financial inclusion within Turkey. To fill this gap, this study aims to contribute to the understanding of the economic, technological, social and demographic drivers of financial inclusion in Turkey. In this context, the study has researched the impacts of some selected variables in the fields of economy, population, demography, transportation, information society and education on financial inclusion in Turkey.

The study has been structured as follows; the review of the literature on financial inclusion has been presented in the second part following the introduction, part three gives the details of the data used in the research and methodology, the results of the econometric models applied in the research have been presented in the fourth section, and part five presents the conclusion.

2. LITERATURE REVIEW

The issue of financial inclusion, which was first discussed in England in 1997 with the view that development should be spread to different areas, has been the interest of various international and national institutions, researchers and practitioners. Early studies focus more on the definition and nature of financial inclusion (Dev, 2006). Later, the studies on developing financial inclusion measurement and measuring, monitoring, and analysing financial inclusion in different countries has become frequent (Demirgüç-Kunt, Klapper, Singer and Van Oudheusden, 2015; Günöz and Özyildirim, 2019; Bayero, 2015; Fungăcovă and Weill, 2015; Câmara and Tuesta, 2014; Yorulmaz 2013; Chakravarty and Pal, 2013; World Bank, 2013; Gupte, Venkataramani and Gupta, 2012; Sarma, 2008; Kempson, Atkinson and Pilley, 2004). In this continuous process, the literature has expanded with studies examining the relationship between financial inclusion and economic, social, demographic, geographical, technological and other variables.

Whether development and economic growth causes any increase in financial inclusion levels is one of the issues discussed extensively in the literature. Raza, Tang, Rubab and Wen (2019) have conducted a meta-analysis study in Pakistan. A significant and positive relationship between financial inclusion and economic development has been found by the authors which reveals that an increase in the level of financial inclusion may improve economic development. Van, Vo, Nguyen and Vo (2019) have applied a panel econometric model to estimate if financial inclusion impacts economic growth or not. The findings support a positive relationship between economic growth and financial inclusion consistent with many previous studies. In addition, it has been determined that the relationship is stronger in the countries where the income and financial inclusion levels are lower. The results of the panel data study conducted by Kim, Yu and Hassan (2018), using the data of the Organization of Islamic Cooperation’s 55-member countries, also reveal that financial inclusion has a positive impact on economic growth. The linear cointegration test results of Sethi and Sethy (2018) together with the data of India for the period from 1975 to 2014 show that there has been a long-run relationship between economic growth and financial inclusion. Both

DOI: 10.17261/Pressacademia.2020.1290 224
demand and supply side improvements in financial inclusion positively impacts economic growth. Shailesh and Ragabiruntha (2018) have collected data through a structured questionnaire and have established a model to determine which factors led economic development through financial inclusion in Tamil Nadu. According to the major findings of their study; financial literature, online banking and understanding banking services are the drivers of financial inclusion and economic development can be led by financial inclusion. Another study which reveals a positive long-run relationship between economic growth and financial inclusion has been conducted by Sethi and Acharya (2018) with data from 31 countries spanning the period 2004-2011.

Some of the studies conducted on the issues of financial inclusion have explored the relationship between financial inclusion and economic welfare indicators - two which are widely used are GDP per capita and income inequality. The findings of the research of Sha’bana, Girardone and Sarkisyan (2020) indicate that there has been a significant positive relationship between GDP per capita and financial inclusion. Jung and Cha (2020) who explored the long-run relationship between financial income inequality and development have found that at the provincial level in China, financial deepening makes inequality worse. According to Ginevicius, Duzdevicute, Schieg and Peleckis (2019) the highest level of financial development has been demonstrated by the countries which have middle GDP per capita indicators. According to Nanda (2017) the level of financial inclusion seems to reflect a movement in tandem with the extent of per capita income and the extent of socio-economic development. The empirical analysis of Sarma and Pais (2011) reveals that per capita gross domestic product, urbanisation, adult literacy and income inequality are important factors in explaining the level of financial inclusion in a country. In addition to these, the other factors which have a positive impact in increasing financial level are electronic and physical connectivity and information availability, indicated by road networks, telephone and internet usage.

Saifullah, Özdeşer and Căuşoğlu (2019) have examined the finance-welfare linkage of Nigerian households in rural areas. The findings have shown financial inclusion has a strong positive impact on the welfare of households. However, the decomposition analysis results have shown that middle-income and high-income households benefit more from the increased level of financial inclusion compared to low-income ones. Zhang and Posso (2019) have researched the impact of financial inclusion on the income of households by using data covering more than 6,200 Chinese households and have found a strong and positive impact of financial inclusion on household income. In contrast with the studies of Sani Ibrahim, Ozdeser and Cavusoglu conducted in Nigeria, the Chinese study by Zhang and Posso has shown that low-income households benefit more from financial inclusion than high-level and mid-level income households. Anwar and Amrullah (2017) have found in their research that financial inclusion can reduce poverty by affecting the overall economy, but it can increase inequality at the same time. The results of Kim’s research (2016), which uses data on the 40 countries in the European Union and OECD between 2004 and 2011, reveal that financial inclusion causes an improvement on the relationship between economic growth and income inequality. Income inequality reduction by means of financial inclusion transforms the negative relationship to a positive relationship between income inequality and economic growth. This transformation trend is stronger in high-fragile countries than in low-fragile countries.

It is widely accepted in the literature that the developments in information and communication technologies are important factors in enlarging financial inclusion. According to Chatterjee (2020), financial inclusion can improve the per capita growth both individually or collectively with information and communication technologies. Musabegovic, Ozer, Djukovic and Jovanovic (2019) have investigated the relationship between the usage of new technologies and GDP per capita. The results of their study reveal a significantly positive relationship between GDP per capita and the usage of smartphones in financial transactions and payment processes. Patwardhan, Singleton and Schmitz (2018) have indicated that taking advantage of the convenience provided by electronic transactions, integrating mobile phones into the payments system, and using technology for turning high-cost operations into self-service or automated processes significantly caused reductions in the cost and expanded access to financial services.

Some studies in the literature investigating the determinants of financial inclusion based on different factors apart from those mentioned above.

Susilowati and Leonard (2019) have investigated the factors using the microdata from global findex 2014. The findings of their binary logistic regression have indicated that there are significant and positive relationships between financial inclusion and the constraints to financial services, motivation to use financial services and sources of loans. By using the World Bank’s 2017 Global Findex Database, Özşuca (2019) analysed the factors which might cause gender differences in using financial products and services. Outputs of the study indicate that disparity in financial inclusion is significantly related to employment. Age and higher education have also been found to be contributing factors to the financial inclusion gap. Alhassan, Li, Reddy and Duppattí’s (2019) findings indicate that the level of financial inclusion is positively related to higher education and higher incomes, and has been negatively affected by religious tensions and unemployment. Szopinski (2019) has investigated the reasons for individuals who chose to be unbanked in Poland and has found the major factors for being unbanked are lower income, lower levels of education, younger age, lack of trust in commercial banks and living in small towns or cities. Using the

DOI: 10.17261/Pressacademia.2020.1290
World Bank's 2017 Global Financial Inclusion database Chu (2019) has applied probit estimation for different measures of financial inclusion. Outputs of the study reveal that being a man, more educated, richer, employed, and older than a certain age increases the likelihood of access to formal financial services. Bozkurt, Karakuş and Yıldız (2018) have examined the possible factors which might generate changes in financial inclusion levels by using 2011 - 2014 period data of 120 countries. The results of their study have revealed that the major factors in the change in financial inclusion are social, banking and political issues. Evans and Osi (2017) have applied a Bayesian VAR model with the World Bank Development Indicators datasets covering the 2005 - 2014 period of 15 African countries. The results have shown that the effects of credit supply, literacy, internet users and servers, and broad money on financial inclusion are positive and significant. In their research in which they used the data of thirty OECD countries, Van der Werff, Hogarth and Peach (2013) have determined that high trust in financial institutions and government causes an increase in the level of financial inclusion.

3. DATA AND VARIABLE DESCRIPTION

The widely used indicators in measuring financial inclusion are access to and use of financial services and products, and quality measures. Access indicators reflect how deep financial access is. Usage indicators measure how adults use financial services. Quality measures specify the compliance level of financial products and services to the needs of customers, the range of options available to customers, and the awareness level and understanding of adults regarding financial services and products (World Bank, 2013). According to Kempson, Atkinson and Pilley (2004), a good financial inclusion measure should be simple, practical, as multidimensional as possible, and should include comparable indicators.

In this study, four access and four usage indicators are used to calculate financial inclusion, taking into account the accessibility of data. Financial access indicators reveal the geographical and demographic penetration of service points. Financial usage indicators show how widespread its use is and how affordable it is (Table 1). Financial inclusion data is obtained from The Central Bank of the Republic of Turkey (TCMB), Banking Regulation and Supervision Agency of Turkey (BDDK), The Banks Association of Turkey (TBB), Participation Banks Association of Turkey (TKBB), The Interbank Card Centre (BKM), and Turkish Statistical Institute (TurkStat).

Table 1: Financial Inclusion Indicators

<table>
<thead>
<tr>
<th>Code</th>
<th>Indicator</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRPG</td>
<td>Branch penetration (geographical)</td>
<td>Branch number per 1,000 km²</td>
</tr>
<tr>
<td>BRPD</td>
<td>Branch penetration (demographic)</td>
<td>Branch number per 100,000 population (+15 years age)</td>
</tr>
<tr>
<td>ATMG</td>
<td>ATM penetration (geographical)</td>
<td>ATM number per 1,000 km²</td>
</tr>
<tr>
<td>ATMD</td>
<td>ATM penetration (demographic)</td>
<td>ATM number per 100,000 population (+15 years age)</td>
</tr>
<tr>
<td>LAPP</td>
<td>Loan account penetration (prevalence)</td>
<td>Loan account number s per 1,000 population (+15 years age)</td>
</tr>
<tr>
<td>LIRA</td>
<td>Loan / income ratio (affordability)</td>
<td>The ratio of average loan amount to GDP per capita</td>
</tr>
<tr>
<td>DAPP</td>
<td>Deposit account penetration (prevalence)</td>
<td>Deposit account number per 1,000 population (+15 years age)</td>
</tr>
<tr>
<td>DIRA</td>
<td>Deposit / Income Rate (affordability)</td>
<td>The ratio of the average deposit account amount to GDP per capita</td>
</tr>
</tbody>
</table>

ATM: Automated teller machine

Higher geographical measurements reveal that the distance is shorter and easier to access to financial services. Per capita branch and ATM distributions show the demographic spread of financial services and measure how many customers a bank and ATM serve. Higher values mean fewer people per branch or ATM and easier access. Deposit and loan account numbers per 100,000 +15 age population indicate the prevalence of the use of financial services. The ratio of average loan and deposit amount to GDP shows the affordability of financial services by individuals. Higher rates indicate that financial services are mostly available to upper income groups (Işık, 2011). Descriptive statistics of financial inclusion indicators used in the study are presented in Table 2.

Table 2: Descriptive Statistics of Financial Inclusion Indicators

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>Mean</th>
<th>SD</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRPG</td>
<td>22</td>
<td>11.43</td>
<td>2.82</td>
<td>7.85</td>
<td>15.48</td>
</tr>
<tr>
<td>BRPD</td>
<td>22</td>
<td>12.47</td>
<td>2.06</td>
<td>9.33</td>
<td>15.61</td>
</tr>
<tr>
<td>ATMG</td>
<td>22</td>
<td>32.83</td>
<td>20.02</td>
<td>8.6</td>
<td>66.29</td>
</tr>
<tr>
<td>ATMD</td>
<td>22</td>
<td>34.62</td>
<td>18.38</td>
<td>11.16</td>
<td>63.34</td>
</tr>
<tr>
<td>LAPP</td>
<td>22</td>
<td>120.88</td>
<td>85.49</td>
<td>15.48</td>
<td>254.78</td>
</tr>
<tr>
<td>LIRA</td>
<td>22</td>
<td>0.53</td>
<td>0.14</td>
<td>0.31</td>
<td>0.74</td>
</tr>
<tr>
<td>DAPP</td>
<td>22</td>
<td>1,593.23</td>
<td>579.03</td>
<td>775.95</td>
<td>2,727.65</td>
</tr>
<tr>
<td>DIRA</td>
<td>22</td>
<td>0.24</td>
<td>0.11</td>
<td>0.13</td>
<td>0.54</td>
</tr>
</tbody>
</table>

DOI: 10.17261/Pressacademia.2020.1290 226
Individual interpretation of the indicators may lead to misleading results. Therefore, the Financial Inclusion Index (FIITR) has been created in order to provide information about the indicators of financial inclusion as a single value and to measure its relationship to numerous variables.

In order to be easily calculable and to produce comparable information, an index has been created for each dimension by accepting 1997 as the base year, and then the Financial Inclusion Index (FIITR) was calculated by taking the arithmetic mean of the two.

\[
FIITR = \frac{\sum_{t} d_t \times 100}{N}
\]

(*d_t*: value of financial inclusion dimension in the relevant year, *d_0*: value of financial inclusion dimension in base year, *N*: number of observed dimensions)

The variables whose impacts on financial inclusion have been investigated include the fields of economy, population, demography, transportation, information society and education. Table 3 gives definitions and Table 4 presents the descriptive statistics of variables.

Table 3: Independent Variables

<table>
<thead>
<tr>
<th>Field</th>
<th>Code</th>
<th>Time Period</th>
<th>Source</th>
<th>Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COLIN</td>
<td>COLIN</td>
<td>1997 – 2018</td>
<td>TCMB, ITO</td>
<td>Cost of living index (foodstuffs, heating and lighting articles, clothing and house furniture, house rent and maintenance and miscellaneous).</td>
</tr>
<tr>
<td>Population, Demography and Transportation</td>
<td>MEDAG</td>
<td>1997 – 2018</td>
<td>TurkStat</td>
<td>Median age obtained from population censuses and address based population registration system..</td>
</tr>
</tbody>
</table>

* ITO: Istanbul Chamber of Commerce, BTK: Information and Communication Technologies Authority of Turkey

Table 5: Descriptive Statistics of Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>SD</th>
<th>Min.</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIITR</td>
<td>2.68</td>
<td>1.33</td>
<td>1.00</td>
<td>4.69</td>
</tr>
<tr>
<td>GDPPC</td>
<td>8,092.69</td>
<td>3,323.37</td>
<td>3,084.39</td>
<td>12,480.37</td>
</tr>
<tr>
<td>UNEMP</td>
<td>9.77</td>
<td>1.66</td>
<td>6.40</td>
<td>12.90</td>
</tr>
<tr>
<td>COLIN</td>
<td>4,179.84</td>
<td>1,388.66</td>
<td>5,960.34</td>
<td>2,007.77</td>
</tr>
<tr>
<td>GINIC</td>
<td>0.42</td>
<td>0.03</td>
<td>0.38</td>
<td>0.52</td>
</tr>
<tr>
<td>MEDAG</td>
<td>28.39</td>
<td>2.29</td>
<td>24.70</td>
<td>32.02</td>
</tr>
<tr>
<td>URBAN</td>
<td>75.37</td>
<td>11.46</td>
<td>60.77</td>
<td>92.50</td>
</tr>
<tr>
<td>RWROD</td>
<td>138,181.36</td>
<td>4,100.88</td>
<td>133,229.00</td>
<td>146,347.00</td>
</tr>
<tr>
<td>VHCLE</td>
<td>13,739,364.64</td>
<td>5,171,641.28</td>
<td>6,863,462.00</td>
<td>22,865,921.00</td>
</tr>
<tr>
<td>MOBPH</td>
<td>48,300,537.59</td>
<td>26,618,589.16</td>
<td>1,483,149.00</td>
<td>80,117,999.00</td>
</tr>
<tr>
<td>INTRN</td>
<td>19,328,421.59</td>
<td>24,609,698.04</td>
<td>75,000.00</td>
<td>74,500,089.00</td>
</tr>
<tr>
<td>LITER</td>
<td>89.47</td>
<td>5.37</td>
<td>82.00</td>
<td>96.42</td>
</tr>
<tr>
<td>SCHOL</td>
<td>6.59</td>
<td>0.98</td>
<td>5.10</td>
<td>8.00</td>
</tr>
</tbody>
</table>

DOI: 10.17261/Pressacademia.2020.1290
3.1. Unit Root Tests

Augmented Dicky Fuller (ADF), Phillips–Perron (PP), and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) unit root tests are used to analyse stationarity properties of variables.

Augmented Dicky Fuller (ADF), Phillips–Perron (PP), and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) unit root tests are used to analyse stationarity properties of variables.

ADF test is an extended application version of the DF (Dickey and Fuller, 1981). DF tests whether \(y = 0 \) in the data of model.

\[
y_t = \alpha + \beta t + \gamma y_{t-1} + \epsilon_t
\]

(2)

where \(y_t \) represents the interest variable, \(t \) represents the time index, \(\gamma \) represents a coefficient, and \(\epsilon \) is the error term. The regression equation is written as

\[
\Delta y_t = y_t - y_{t-1} = \alpha + \beta t + \gamma y_{t-1} + \epsilon_t
\]

(3)

where \(\Delta \) represents the first difference operator. By writing in this way, a linear regression \(\Delta y_t \) against \(t \) and \(y_{t-1} \) can be applied and it can be tested whether \(y \) has any difference from 0. \(y = 0 \) indicates a random walk process. If not and \(-1 < 1 + \gamma < 1\), the process is accepted as stationary.

The major problem with this method is that the Dickey–Fuller method is not effective if \(\epsilon \) in an autoregressive model is auto correlated (Maddala and Kim 1999). To solve this problem, ADF unit root test has been proposed. By adding \(\Delta y_{t-p} \) to the equation, the ADF approach enables high order autoregressive processes. But still the \(y = 0 \) equation is tested.

\[
\Delta y_t = \alpha + \beta t + \gamma y_{t-1} + \delta_1 \Delta y_{t-1} + \delta_2 \Delta y_{t-2} \ldots + \epsilon_t
\]

(4)

The PP test (Phillips and Perron, 1988) is a non–parametric approach in which the selection of serial correlation level is not required. Unlike the ADF method, it rather takes the prediction scheme similar with DF method, but in this model the statistic is corrected for autocorrelations and heteroscedasticity. The last unit root test, which will be applied to the time series used in our study to improve the finite sample properties of the ADF and PP tests is the KPSS test in which the null hypothesis is examined under the assumption that an observable time series is stationary around a deterministic trend. For the KPSS approach, the null hypothesis is that the series is stationary.

3.2. Cointegration

In the research, Johansen approach is used for testing cointegration (Johansen and Juselius, 1990; Johansen, 1988). Vector error correction (VEC) representation is as follows in Johansen cointegration approach.

\[
\Delta x_t = \sum_{i=1}^{r-1} \delta_i \Delta x_{t-1} + \Pi x_{t-1} + \mu + \epsilon_t
\]

(5)

where \(\Delta x_{pt} \) comprise a null vector \(\{0\} \) of \(n \times x \) series. The parameter \(\mu \) is the deterministic component composed of the constant, trend, structural break, and seasonality; \(\delta_i \) represents the short run parameter. The long–run relationship is captured by the matrix, defined as, where \(x \) is stationary if a cointegration relationship exists and the matrix \(\Pi \) has a reduced rank of \(r \): \(0 < r < n \) (Thong, Ankamah–Yeboah, Julia Bronnmann, Nielsen, Roth and Schulze–Ehlers, 2020).

In Johansen Method, the maximum likelihood of the matrix is estimated assuming that the error variables are distributed normally. The Johansen tests are also known as maximum eigenvalue and trace tests.

\[
LR(r_0, r_0 + 1) = -T \ln(1 - \lambda_{r_0+1})
\]

(6)

The trace approach examines whether the rank of the matrix \(\Pi \) is \(r_0 \). The alternative hypothesis is that \(r_0 < \text{rank} (\Pi) \leq n \), where \(n \) represents the possible cointegrating vectors’ maximum number.

\[
LR(r_0,n) = -T \sum_{i=r_0+1}^{n} \ln(1 - \lambda_i)
\]

(7)

where \(LR(r_0,n) \) represents the statistic of a likelihood test if ratio statistic rank is \(\{\Pi\} = r \) or \(\{\Pi\} \leq n \).
3.3. Causality Tests

Finally, causality relationships between the variables will be tested by using the Granger and Toda–Yamamoto methods. Granger causality is a widely used approach in times series to examine the causality relationship between two variables by following a “bottom up” procedure.

\[Y_t = \sum_{i=1}^{k} a_t X_{t-i} + \sum_{i=1}^{k} \beta Y_{t-i} + \mu \]
\[X_t = \sum_{i=1}^{k} a_t X_{t-i} + \sum_{i=1}^{k} \gamma Y_{t-i} + \nu \]

(8)
(9)

where, \(X \) does not, Granger causes \(Y \) in the Eq. (8) and \(Y \) does not, Granger causes \(X \) in the Eq. (9) are null hypothesis’ (\(H_0 \)). The rejection of null hypothesis (\(h_1 \)) reveals Granger-cause where \(\mu \) and \(\nu \) are correlated.

Toda–Yamamoto, the second method used to reveal the causality relationships between the variables in the research, is not sensitive to cointegration properties and is feasible for stationary or non–stationary VAR models. In this method, preliminary information such as whether the variables contain unit root or the number of cointegration vectors is not needed. In Toda–Yamamoto method, constraint tests such as Wald likelihood ratio and LaGrange multiplier are investigated with a valid Wald statistic (an asymptotic \(x^2 \) distribution), regardless of the order of integration of the variable (Toda and Yamamoto 1995).

\[Y_t = \alpha_1 + \sum_{i=1}^{k+d} \alpha_i Y_{t-i} + \sum_{i=1}^{k+d} \beta_i Y_{t-i} + \varepsilon_{yt} \]
\[X_t = \alpha_2 + \sum_{i=1}^{k+d} \alpha_i Y_{t-i} + \sum_{i=1}^{k+d} \delta_i Y_{t-i} + \varepsilon_{xt} \]

(10)
(11)

where \(k \) represents the optimal lag order, \(d \) represents the maximum order of integration of the series, and \(\varepsilon_{yt} \) and \(\varepsilon_{xt} \) represent error terms.

4. RESULTS

In this study, the impacts of the variables regarding economy, population, demography, transportation, information society and education issues on financial inclusion is examined using annual data from Turkey over the 1997 - 2018 period. To explain these impacts, the following vector auto regression (VAR) models have been formulated.

\[FII TR_t = \alpha_0 + \alpha_1 GDPPC_t + \alpha_2 UNEMP_t + \alpha_3 COLIN_t + \alpha_4 GINI C_t + \varepsilon_t \]
\[\text{where; } FII \text{ is the dependent variable representing Financial Inclusion Index. GDPPC is the gross domestic product per capita, UNEMP is the unemployment rate, COLIN represents the cost of living index, GINI C represents the Gini coefficient, } \alpha_0 \text{ represents the constant term, } \alpha_1, \alpha_2, \alpha_3, \alpha_4 \text{ represents the coefficients of the exogenous variables, } t \text{ represents time and } \varepsilon \text{ is the stochastic term.} \]

\[FII TR_t = \alpha_0 + \alpha_1 MEDAG_t + \alpha_2 URBAN_t + \alpha_3 RWROD_t + \alpha_4 VH CLE_t + \varepsilon_t \]
\[\text{where; } MEDAG \text{ is the median age, URBAN is the urbanization rate, RWROD is the sum of the length of railways and roads, VH CLE is the number of road motor vehicles.} \]

\[FII TR_t = \alpha_0 + \alpha_1 MOBPH_t + \alpha_2 INTRN_t + \alpha_3 LITER_t + \alpha_4 SCHOL_t + \varepsilon_t \]
\[\text{where; } MOBPH \text{ represents the number of mobile phone subscribers, INTRN represents the number of broadband internet subscribers, LITER represents the literacy rate, SCHOL represents mean years of schooling.} \]

In the first stage of the research, the stationarity of the series was examined at 0.05 significance level by applying unit root tests.

<table>
<thead>
<tr>
<th>Table 6: Unit Root Test Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>FII TR</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>GDPPC</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>UNEMP</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>COLIN</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>GINI C</td>
</tr>
</tbody>
</table>

DOI: 10.17261/Pressacademia.2020.1290
In the Johansen Cointegration framework, long-term relationships between the variables are tested with the Johansen Cointegration framework. Akaike Information Criterion (AIC) is used to determine optimal lag length.

Table 7: Lag Length Selection

<table>
<thead>
<tr>
<th>Lag</th>
<th>LogL</th>
<th>LR</th>
<th>FPE</th>
<th>AIC</th>
<th>SC</th>
<th>HQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eq (15)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>-262.789</td>
<td>-</td>
<td>1201902.</td>
<td>28.18831</td>
<td>28.43685</td>
<td>28.23038</td>
</tr>
<tr>
<td>1</td>
<td>-244.704</td>
<td>24.74786</td>
<td>2781676.</td>
<td>28.91621</td>
<td>30.40743</td>
<td>29.16859</td>
</tr>
<tr>
<td>2</td>
<td>-170.2</td>
<td>62.74054*</td>
<td>30796.12*</td>
<td>23.70522*</td>
<td>26.43913*</td>
<td>24.16791*</td>
</tr>
<tr>
<td>Eq (16)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>-15.2905</td>
<td>-</td>
<td>5.8306*</td>
<td>2.135843</td>
<td>2.384380*</td>
<td>2.177906</td>
</tr>
<tr>
<td>1</td>
<td>-1.63421</td>
<td>18.68757</td>
<td>2.15e-05</td>
<td>3.329917</td>
<td>4.821136</td>
<td>3.582290</td>
</tr>
<tr>
<td>2</td>
<td>40.22946</td>
<td>35.25362</td>
<td>7.39e-06</td>
<td>1.554794*</td>
<td>4.288696</td>
<td>2.017478*</td>
</tr>
</tbody>
</table>

* indicates the optimal lag length at 0.05 level.

LR: Sequential modified LR test statistic, FPE: Final prediction error, AIC: Akaike information criterion, SC: Schwarz information criterion, HQ: Hannan-Quinn information criterion.

Johansen Cointegration test results reveal that there are three cointegration equations for the Eq. (15) and one cointegration equation for the Eq. (16). The findings of the trace and maximum eigenvalue tests are consistent with each other. In order to predict the models by the Johansen method, the number of delays was determined as two according to the AIC (Table 7).

Table 8: Johansen Cointegration Test Results

<table>
<thead>
<tr>
<th>Hypothesized no of cointegrating equation(s)</th>
<th>λ_{max}</th>
<th>λ_{trace}</th>
<th>Critical Value</th>
<th>Probability**</th>
</tr>
</thead>
<tbody>
<tr>
<td>None*</td>
<td>0.993319</td>
<td>164.1922</td>
<td>69.81889</td>
<td>0.0000</td>
</tr>
<tr>
<td>Eq (15) At most 1*</td>
<td>0.817202</td>
<td>69.03100</td>
<td>47.85613</td>
<td>0.0002</td>
</tr>
<tr>
<td>At most 2*</td>
<td>0.714999</td>
<td>36.74285</td>
<td>29.79707</td>
<td>0.0067</td>
</tr>
<tr>
<td>At most 3</td>
<td>0.361508</td>
<td>12.89287</td>
<td>15.49471</td>
<td>0.1188</td>
</tr>
<tr>
<td>Eq (16) At most 1</td>
<td>0.965375</td>
<td>116.3989</td>
<td>69.81889</td>
<td>0.0000</td>
</tr>
<tr>
<td>None*</td>
<td>0.793487</td>
<td>52.49834</td>
<td>47.85613</td>
<td>0.0172</td>
</tr>
</tbody>
</table>

DOI: 10.17261/Pressacademia.2020.1290
At most 2 0.481698 22.52793 29.79707 0.2700
At most 3 0.348576 10.04117 15.49471 0.2776

* the hypothesis is rejected at the level of 0.05 significance
\(\lambda_{max} \): Maximum Eigen statistic, \(\lambda_{trace} \): Trace statistic.

The long-term equilibrium models estimated using the Johansen method are as follows.

\[
FIITR_t = 6.109 + 0.001GDPPC_t - 45.769UNEMP_t + 7.406COLIN_t + 1.607GINI_t
\]
\((0.023) \quad (0.000) \quad (0.047) \quad (0.000) \quad (2.705) \) \tag{17}

\[
FIITR_t = 6.841 - 6.191MEDAG_t + 0.174URBAN_t - 1.736LITER_t + 7.115SCHOOL_t
\]
\((0.846) \quad (0.664) \quad (0.001) \quad (0.129) \quad (0.472) \) \tag{18}

It is seen that the t values of the GDPPC, UNEMP, COLIN variables in Eq. (15) and URBAN variable in Eq. (16) are statistically significant at 0.05 level. The results of Johansen's cointegration test suggests significant and positive long-run co-movement between financial inclusion and GDP per capita, urbanization and a significantly negative long-run co-movement between financial inclusion, unemployment, and cost of living.

In the next stage, The Granger causality test has been performed to examine the causal relationship between variables. The optimal lag length determined by VAR for both models (Eq. 15 and Eq. 16) is two. The results of the Granger tests reveal no short-term causal relationships between variables (Table 9).

Table 9: Granger Causality Test Results

<table>
<thead>
<tr>
<th>Direction of Causality</th>
<th>F statistic</th>
<th>probability**</th>
<th>Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDPPC (\rightarrow) FIITR</td>
<td>1.3344</td>
<td>0.2948</td>
<td>(h_0)</td>
</tr>
<tr>
<td>FIITR (\rightarrow) GDPPC</td>
<td>0.9065</td>
<td>0.4264</td>
<td>(h_0)</td>
</tr>
<tr>
<td>UNEMP (\rightarrow) FIITR</td>
<td>0.4731</td>
<td>0.6327</td>
<td>(h_0)</td>
</tr>
<tr>
<td>FIITR (\rightarrow) UNEMP</td>
<td>1.0332</td>
<td>0.3815</td>
<td>(h_0)</td>
</tr>
<tr>
<td>COLIN (\rightarrow) FIITR</td>
<td>1.6679</td>
<td>0.2241</td>
<td>(h_0)</td>
</tr>
<tr>
<td>FIITR (\rightarrow) COLIN</td>
<td>2.2697</td>
<td>0.1400</td>
<td>(h_0)</td>
</tr>
<tr>
<td>URBAN (\rightarrow) FIITR</td>
<td>0.6338</td>
<td>0.5451</td>
<td>(h_0)</td>
</tr>
<tr>
<td>FIITR (\rightarrow) URBAN</td>
<td>0.3582</td>
<td>0.7052</td>
<td>(h_0)</td>
</tr>
</tbody>
</table>

where \(h_0 \): no causal effect of \(X \) on \(Y \), \(h_1 \): causal effect of \(X \) on \(Y \)

Arrows point the direction of causality

Short-term causality relationships were also tested using the Toda–Yamamoto method with the length of 2 + 1 = 3 (\(P + d_{max} \)). The findings of the Toda–Yamamoto test are consistent with the results of Granger causality test apart from URBAN \(\rightarrow \) FIITR hypothesis which indicates that there is a one-way causal relationship running from urbanization level to financial inclusion (Table 10).

Table 10: Toda–Yamamoto Causality Test Results

<table>
<thead>
<tr>
<th>Direction of Causality</th>
<th>Test statistic</th>
<th>p value</th>
<th>Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDPPC (\rightarrow) FIITR</td>
<td>1.7922</td>
<td>0.4082</td>
<td>(h_0)</td>
</tr>
<tr>
<td>FIITR (\rightarrow) GDPPC</td>
<td>1.4678</td>
<td>0.4800</td>
<td>(h_0)</td>
</tr>
<tr>
<td>UNEMP (\rightarrow) FIITR</td>
<td>3.1729</td>
<td>0.2046</td>
<td>(h_0)</td>
</tr>
<tr>
<td>FIITR (\rightarrow) UNEMP</td>
<td>1.9542</td>
<td>0.3764</td>
<td>(h_0)</td>
</tr>
<tr>
<td>COLIN (\rightarrow) FIITR</td>
<td>4.5629</td>
<td>0.1021</td>
<td>(h_0)</td>
</tr>
<tr>
<td>FIITR (\rightarrow) COLIN</td>
<td>2.6839</td>
<td>0.2613</td>
<td>(h_0)</td>
</tr>
<tr>
<td>URBAN (\rightarrow) FIITR</td>
<td>6.0656</td>
<td>0.0482</td>
<td>(h_1)</td>
</tr>
<tr>
<td>FIITR (\rightarrow) URBAN</td>
<td>0.5549</td>
<td>0.7577</td>
<td>(h_0)</td>
</tr>
</tbody>
</table>

where \(h_0 \): no causal effect of \(X \) on \(Y \), \(h_1 \): causal effect of \(X \) on \(Y \)

Arrows point the direction of causality

5. CONCLUSION

In this study, the factors which might have an impact on financial inclusion in Turkey during the period of 1997 - 2018 were examined. In this context, firstly, the financial inclusion index, which consists of four access and four usage dimensions, was created. The variables whose effect on financial inclusion would be investigated were determined through the fields of
economy, population, demography, transportation, information society and education, and three regression models were created. GDP per capita, unemployment rate, cost of living index, Gini coefficient, median age, urbanization rate, total length of railways and roads, number of road motor vehicles, number of mobile phone subscribers, number of broadband internet subscribers, literacy rate and mean years of schooling as the independent variables.

The series was first difference stationary except from total length of railways and roads, number of road motor vehicles, number of mobile phone subscribers and number of broadband internet subscribers' series which were all non-stationary. Non-stationary variables were excluded from analysis and models were combined. For the estimation of the models, the Johansen Cointegration method was applied and causality relationships between the variables were tested with Granger and Toda–Yamamoto approaches.

Consistent with many studies demonstrating financial inclusion is positively and significantly related to GDP per capita, it was expected to find that GDP per capita has a positive impact on financial inclusion since increases in income may cause people to demand more financial services. Findings obtained by the Johansen approach suggests a significantly positive long-run co-movement between financial inclusion and GDP per capita. However, outputs of Granger and Toda–Yamamoto causality tests reveal there is no causality relationship in short-run between GDP per capita and financial inclusion in Turkey.

Unlike GDP per capita, it was expected that financial inclusion levels would decrease as national unemployment levels increase and therefore a negative relationship between unemployment and financial inclusion may appear. On the examination of cointegration test results it is seen that there is a significantly negative long-run co-movement between financial inclusion and unemployment in Turkey. Similar to the GDP per capita, the results of Granger and Toda–Yamamoto causality tests reveal that there is no significant causal relationship between unemployment and financial inclusion in Turkey in the short-run.

Increases in the cost of living were expected to impact savings rates negatively and thus financial inclusion. However, financial inclusion also has access to and use of loan dimensions. Increases in living costs may also cause an increase in the demand for consumer loans. Findings obtained by the Johansen approach suggests a significantly positive long-run co-movement between financial inclusion and cost of living. However, no significant short-term causality effect is determined between two variables.

Financial inclusion is a key enabler in reducing poverty and boosting prosperity (World Bank, 2018). Although decreases in the level of inequality were expected to cause an increase in financial inclusion, no significant long-run cointegration and no short-run causality effect has been determined between the Gini coefficient and the financial inclusion in Turkey.

It is widely accepted that the aging of a population has considerable impacts on financial markets because of the increase in savings rates and the demand for investment funds (Bosworth, Bryant and Burtless, 2004). On the other hand, unbanked adults may be of a younger age. The increases in the median age was expected to cause increases in financial inclusion. However, the outputs of the research show that there is no significant relationship between median age and financial inclusion in Turkey in the short and long run.

It is generally stated that the urbanization process leads to the growth of various infrastructural facilities as well as helps in promoting entrepreneurship and industrial growth. Therefore, high rate of urbanization was expected to give a boost to the financial sector resulting in a higher level of financial inclusion. The outputs of Johansen's cointegration test reveal significant and positive long-run co-movement between urbanization rate and financial inclusion. In addition, urbanization rate variable is found to have a short-run causal effect on financial inclusion in the Toda–Yamamoto test. The significant relationship between the level of financial inclusion and urbanization rate in the short and long run reveals that the increase in the level of urbanization causes individuals to access financial institutions more easily and use more financial products in Turkey.

Although a higher literacy rate and mean years of schooling were expected to cause higher financial inclusion levels by providing more information and awareness about financial products, the results obtained from the research do not reveal significant relationship in the short and long-run between two variables.

REFERENCES

DOI: 10.17261/Pressacademia.2020.1290

DOI: 10.17261/Pressacademia.2020.1290 234

TESTING THE WEAK FORM MARKET EFFICIENCY OF BORSA ISTANBUL: AN EMPIRICAL EVIDENCE FROM TURKISH BANKING SECTOR STOCKS

DOI: 10.17261/Pressacademia.2020.1291
JEFA- V.7-ISS.3-2020(4)-p.236-249

Suadiq Mohammed Hailu¹, Gamze Vural²
¹Çukurova University, PhD Candidate in Finance, Adana, Turkey. suadiq1434@gmail.com , ORCID: 0000-0003-3270-1357
²Çukurova University, Department of Business, Adana, Turkey. gvural@cu.edu.tr , ORCID: 0000-0002-1385-7551

Date Received: May 17, 2020
Date Accepted: August 21, 2020

To cite this document

Permanent link to this document: http://doi.org/10.17261/Pressacademia.2020.1291
Copyright: Published by PressAcademia and limited licensed re-use rights only.

ABSTRACT

Purpose- The purpose of this study is to assess the weak form efficiency of Borsa Istanbul banking sector stocks using bank stocks listed in BIST 30. In addition to individual banking sector stocks, BIST 100 and BIST BANKS indexes are also investigated.

Methodology- For this purpose, weekly adjusted closing prices of selected stocks and indexes are collected from finance.yahoo.com and investing.com. The study period covers from January 4, 2010, to December 20, 2019. Therefore, a total of 520 observations for each stock and index are analyzed using autocorrelation, run test and unit root tests such as Augmented Dickey-Fuller (ADF), Phillips-Perron test (PP) and Kwiatkowski-Phillips-Schmidt-Shin (KPSS).

Findings- The autocorrelation test results indicated that only VAKBAN and YAKBNK are efficient at the weak form of efficiency during the study period. On the other hand, the runs test result showed that only AKBANK and GARAN do not follow the random walk hypothesis and the other six samples are efficient at the weak form of efficiency. Finally, the unit root tests such as ADF, PP and KPSS results indicated that all samples do not follow the random walk hypothesis and they are not efficient at the weak form of market efficiency. BIST 100 and BIST BANKS indexes are inefficient according to all methods except in run test analysis.

Conclusion- Consequently, the three types of tests employed in this study exhibited a controversial result and it is difficult to give a general conclusion regarding the efficiency of the BIST Banking sector in the weak form. This indicated the probability of making an abnormal return by examining the Borsa Istanbul banking sector stocks’ historical prices.

Keywords: Autocorrelation, banking sector, Borsa Istanbul, efficiency, run test, unit root tests
JEL Codes: G10, G11, G14

1. INTRODUCTION

The relationship between capital markets and economic growth is one of the fields that catch the attention of economics and finance researchers. Several studies identified that there is an association between capital market development and economic growth. Carp (2012) states that stock markets have a vital role in the global economy, and their impacts on economic growth can be transferred to the real sector via their inevitable ways such as creating liquidity, market capitalization, risk distribution and allocation. Stock markets are also having an important function for the economy by providing liquidity to the market, creating fund sources through encouraging saving, expanding the ownership structure of capital for broadening society and playing as an economic indicator. The above-mentioned roles will effective when the stock market is efficient. The efficiency of the stock market is depending on the fairly and effectively change of securities’ price in the market, fast and uninterrupted flow of information through the market, the low transaction cost in the market and the act of investors in the market rationally (Aydin, Baslar & Coskun, 2015).

There are three forms of market efficiency such as allocational market efficiency, operational market efficiency and informational market efficiency (Bauer, 2004). Allocational market efficiency is concerned with how scarce resources are distributed fairly through capital market instruments. On the other hand, operational market efficiency implied that if a
market is operationally efficient, market participants can perform their financial transaction at a possible minimum cost. According to the concept of informational market efficiency, if a market is informationally efficient, the market prices of financial instruments are reflected all available information (Pilbeam, 2018). This study concerned with only informational market efficiency and the phrase market efficiency is used as a proxy informationally efficiency through this paper.

The concept of the Efficient Market Hypothesis (EMH) depends on the random walk theory. In 1953, Maurice Kendall, a professor of statistics at the London School of Economics published an article named “The Analysis of Economic Time Series” in Journal of the Royal Statistical Society. He examined the weekly and monthly data for 22 economic series; 19 stock groups for the period from 1928 to 1938, monthly average price of wheat in the Chicago commodity markets from 1883 to 1934, monthly average price of wheat from 1983 to 1934 (excluding 1915 to 1920) and monthly spot cotton at New York commodity markets from 1816 to 1951 (excluding 1861-1866 and 1914-1920). The result of Kendall’s study confirmed that the series’ prices are following random changes from one term to the next (Kendall, 1953). Kendall’s empirical examinations commonly named the “random walk theory” (Dimson & Mussavian, 1998).

The EMH commenced in the 1960s by the works of Fama (1965) and Samuelson (1965). Fama (1965) indicates that the prices of stock markets follow a random walk and he defined efficient market as “a market where there are large numbers of rational, profit-maximizers actively competing, with each trying to predict future market values of individual securities, and where important current information is almost freely available to all participants.” Samuelson (1965) states that in the reasonable market, price “perform a random walk with no predictable bias.” According to Kendall (1953), the prices of stocks are shows unpredictable movement and there is no relationship between historical prices and future prices.

Initially, the stock market efficiency divided into a weak and strong form of efficiency by Harry Roberts and then Fama (1970) categorized it into three forms such as the weak, semi-strong and strong form of market efficiency. Fama identified three forms of information sets i.e. historical price information, publicly available information and unpublic information or insiders’ information. The historical price information is used to test the efficiency of the stock market in its weak form. Firm-specific publicly available information (dividend announcement, merger and acquisition, earning announcement, new security issue and stock split) and general macro publicly available information (interest rate, exchange rate, GDP, commodity prices, inflation and money supply) are used to test the efficiency of stock market at the semi-strong form and insiders’ information is used to test the strong form of efficiency.

Since in the 1970s several pieces of research conducted to identify the efficiency level of stock markets around the world. Identifying the efficiency levels of the stock markets has a vital role for policymakers and investors (Cooray & Wickremasinghe, 2007). The efficiency of the stock markets can be tested at a micro-level using single stock prices or macro-level using stock indexes. Researchers in economics and finance almost agreed on the efficiency of stock markets in developed countries at the weak form of efficiency. On the contrary, there is no agreement on the efficiency of developing countries stock market at the weak form of efficiency (Malkiel, 1989). Therefore, there is a need to test developing countries’ stock markets in the weak form. In this regard, this paper aims to test the weak form efficiency of Borsa İstanbul using baking sector stocks.

2. THE GENESIS OF CAPITAL MARKET IN TURKEY

The origins of the structured capital market in Turkey dates back to the second half of the 19th century. During the Ottoman Empire, the first capital market is known as “Dersaadet Securities Exchange” was established in 1866. After the foundation of the Turkish Republic, a new law was issued to rearrange capital markets “İstanbul Securities and Foreign Exchange Bourse” was established in 1929 (Batten, Fetherston & Szilagyi, 2004).

In 1982, the “Capital Market Board” was established to form, amend and administer the Turkish security markets. The board was responsible for providing reliable information to the public, creating a suitable environment for the operation of the market, taking necessary action to expand the share market, doing audits and examinations. Consequently, the Board started to prepare a suitable legal and institutional framework for Turkey’s capital market and on October 19, 1984, a new “Capital Market Law” regarding the establishment capital market was decreed. The new stock market regulations enacted on December 18, 1985 consists of the rules and regulations of the stock exchange. On December 26, 1985, Turkey’s new stock exchange officially inaugurated with the new name of “İstanbul Stock Exchange” (Chambers, 2006).

Until 2013, the İstanbul Stock Exchange sustained its operations in the capital market as a state-owned entity and showed a progressive in corresponding with the Turkish economy growth. In 2013, depending on the new “Capital Market Law” enacted, the three separate exchanges such as İstanbul Stock Exchange (IMKB), Istanbul Gold Exchange (IGE) and Turkish Derivatives Exchange (TurkDEX) merged as one entity known as Borsa İstanbul (BIST). BIST became a profit-based joint-stock company since in 2013 (Canbaş & Doğukanlı, 2017).
Currently, BIST encompasses four different markets such as equity market (publicly traded corporations’ stocks from different sectors are traded), debt securities market (organized market for both fixed income securities and repo-reverse repo dealings are traded), derivatives market (single stock futures and options, index futures and options, currency futures and options, precious metals, commodity and energy futures are traded) and precious metals and diamond Markets. (Borsa İstanbul, 2019). BIST calculates several market indexes for investors based on capitalization, sustainability, liquidity, established cities, technology, sector, corporate governance, dividend, initial public offering, etc. 354 stock indexes are calculating in BIST and 59 indexes out of 354 are calculated in real-time and the rest 259 are calculated once a session (Borsa İstanbul, 2019). According to the Public Disclosure Platform (PDP), there are 490 companies listed in BIST.

Even several studies conducted to test the weak form efficiency of Borsa İstanbul; there is no consensus between researchers on its efficiency at the weak form. Most of the studies tested BIST efficiency using stock indexes. This study is trying to assess the efficiency of Borsa İstanbul using both indexes such as BIST 100 and BIST BANKS, and 6 banking sector individual stocks included in the BIST 30 index. The finance sector is playing a significant role in Turkish economy development. This sector is mainly dominated by the banking business. As stated by the Investment office of Turkey (2019), the banking business has a 70% share from the overall finance sector services. Furthermore, the banking sector also plays a substantial contribution to the development of Borsa İstanbul and it has a significant share in terms of market value and trading volume. Due to the above-mentioned reasons, the banking sector is selected to investigate the efficiency of Borsa İstanbul.

The rest of the paper is set out as follows: In the next section, we analyzed related literatures on the efficiency of Turkish Stock market. In Section 4, we describe the method applied and the data used to test the efficiency of the Turkish stock market. The empirical results are presented in Section 5. The summary and conclusions are presented in section 6.

3. LITERATURE REVIEW

Studies like Stengos & Panas (1992) and Khandoker, Siddik & Azam (2011), assessed the efficiency of banking sector stocks for Athens Stock Exchange and Dhaka Stock Exchange respectively. This section devoted to reviewing empirical studies conducted to assess the efficiency of Istanbul security exchange (Borsa İstanbul). Several studies were done to test the efficiency of Borsa İstanbul using different methods which covered various study periods. These empirical studies reviewed by chronological order as follows.

Alparslan (1989) tested the efficiency of the Istanbul Stock Exchange (ISE) using the weekly prices of 11 selected individual stocks for the period covering from January 10, 1986 - October 28, 1988. To investigate the weak form of efficiency, he used autocorrelation, runs test and filter test. The outcome of autocorrelation and runs tests indicated that ISE was efficient at the weak form and based on filter tests result, ISE was not efficient at the weak form. Balaban (1995) investigated the efficiency of Istanbul Security Exchange (ISE) at the weak and semi-strong form of efficiency using autoregression and autocorrelation for a total 1,646 closing prices of Istanbul Securities Exchange Composite Index (ISECI) covering a period from January 4, 1988, to August 5, 1994. The finding indicates that the ISE was not efficient neither at the weak-form nor the semi-strong form efficiency.

To test whether Istanbul Stock Exchange (ISE) is following the random walk hypothesis or not, Buguk & Brorsen (2003) did research using 396 observations enclosed from 1992 to 1999 for ISE industrial, composite and financial indexes weekly closing prices. They applied unit root tests (Augmented Dickey-Fuller test), GPH fractional integration test and variance ratio testes (LOMAC single variance ratio test and Rank- and sign-based variance ratio tests). According to ADF unit root, LOMAC variance ratio, and GPH fractional integration tests, the three indexes are following the random walk hypothesis and on the other hand the rank- and sign-based variance ratio testes indicated that the selected indexes are not following the random walk hypothesis.

Muslumov, Aras & Kurtulus (2003) studied the weak form of efficient market hypothesis in ISE using the widest study period which covered from 1990 to 2002. They collected the weekly prices of ISE-100 index and individual stocks that included in ISE-100 index. Generalized Auto-regressive Conditional Heteroscedastic (GARCH) method is employed to test efficiency. The finding indicated that ISE-100 national index follows the weak form of efficient market hypothesis and 65% of the individual stocks studied do not show the weak form of efficient market hypothesis while the remaining 35% does.

Kılıç (2005) assessed the weak form of efficient market hypothesis for ISE National 100 index using Markov chain methodology for the period covering from September 23, 1987, to October 2, 2004. His finding indicates that ISE does hold the weak form of an efficient market hypothesis. Aga & Kocaman (2008) investigated the efficiency levels of ISE by calculating their own index named “return index-20”. They select the big 20 companies traded in ISE and calculated monthly return for the period covered from January 1986-November 2005. They analyze the collected data using time series regression method. Their finding indicated that ISE was efficient at the weak form of efficiency.
Al-Jafari (2013) tested the randomness behaviour of ISE using XU 030 index daily prices from January 1997 to December 2011. He employed unit root tests, runs tests and variance ratio test to assess the efficiency form of ISE. His finding indicated that ISE does not efficient at the weak form of efficiency, means ISE does not follow the random walk hypothesis. Sayeh (2013) empirically investigated the weak form of efficiency for Amman Stock Exchange, (ASE) and Istanbul Security exchange (ISE). He collected historical price information for the period 2000-2011 and analyzed using Ljung Box Autocorrelation test, Runs test, Dickey-Fuller Unit Root test, and Individual Variance Ratio test. The result from run and Autocorrelation tests indicated that ISE does not follow the random walk hypothesis while Dickey-Fuller tests and Individual Variance Ratio tests show that it follows the random walk hypothesis.

Kapusuzoglu (2013) did research to assess the efficiency of ISE using 3943 daily price observations of ISE National 100 index for the period from 1996 to 2012. He implemented unit root tests such as Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) tests to investigate the efficiency of ISE. The finding shows that the ISE National 100 index did not follow the weak form of an efficient market hypothesis. Daver, Karacaer & Hulya (2013) examined the efficiency of Turkish Derivatives Exchange (TurkDEX 100) and Borsa Istanbul (BIST 100 Index) daily return for the period from December 2, 2007, to August 2, 2013, using serial correlation test, the runs test, and the variance ratio test. They conclude that ISE is efficient at the weak form of efficiency.

Gozbasi, Kucukkayaplan & Nazlioglu (2014) assessed the efficiency of Borsa Istanbul using the daily data for the Borsa Istanbul composite index (BIST 100), industry index, financial index and services index for the period from July 1, 2002, to July 7, 2012. The employed linearity test developed by Harvey et al. (2008) and the nonlinear Exponential Smooth Transition Autoregressive (ESTAR) unit root test developed by Kruse (2011). They conclude that Turkey’s stock market is following the weak form of an efficient market hypothesis. Yücel (2016) studied the efficiency of Borsa Istanbul by collecting the returns of 22 indexes for the period from 2000 to 2015. The analyze is conducted using unit root tests such as Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP). The finding indicated that all 22 indexes examined in this study are efficient at the weak form of efficiency. Bulut (2016) tested the weak form of the efficient market hypothesis for BIST 100 index by using the monthly observations from January 2003 to September 2015. He employed Lee and Strazich (2003) and Carrion-ı-Silvestre et al. (2009) unit root tests. The finding shows that BIS 100 index is efficient at the weak form in this study period.

Akgun & Şahin (2017) investigated the weak-form of efficiency for BIST indexes such as BIST 100, BIST Industry, BIST Service and BIST Financial index. They collected the daily closing prices of such indexes for the period between January 4, 2010- November 2, 2017 and analyzed using unit root tests (Augmented Dickey-Fuller (ADF), Phillips-Perron (PP) and Kwiatkowski-Phillips Schmidt-Shin (KPSS)) and structural broken unit root tests. The finding indicated that BIST is inefficient at the weak form of efficiency. Tas & Atac (2019) investigated the randomness of Borsa Istanbul using Dickey-Fuller and Runs test for separate two study periods. BIST30 index and companies included in BIST 30 index daily prices collected for a five-year period from 2013 to 2018. The finding implies that the analyzed indexes are efficient at the weak form according to the Dickey-Fuller test while they are not efficient according to the run test.

Aliyev (2019) tested the weak form efficiency of Borsa Istanbul using BIST 100 indexes weekly price covering the period from 2000 to 2014. To analyze the efficiency, Smooth transition autoregressive (STAR) type nonlinear model is employed. According to Aliyev’s nonlinear analysis, BIST is inefficient at the weak form of efficiency.

To sum up, 16 studies conducted to test the weak form of efficient market hypothesis in Borsa Istanbul are reviewed. These studies employed different analyzing methods, study periods and data. Some papers analyzed the efficiency based on individual companies’ stock and some of the analyzed using stock indexes. About half of the papers reviewed concluded that Borsa Istanbul is efficient at the weak form and the rest half concluded that BIST is not efficient at the weak form of efficiency. There are also some different results in the same study used different models. Some models support the efficiency and some do not support. The inferences we can take from the previous studies are there is not a common agreement on the efficiency of BIST at the weak form and there is a need for more studies regarding the efficiency of BIST. In this regard, this study aims to investigate the sectoral efficiency of BIST using the banking sector index and banking sector individual stocks.

4. DATA AND METHODOLOGY

As clearly illustrated in the introduction part of this paper, Fama (1970) identified three types of information sets to test the efficiency of stock markets. Among these information sets, historical price information is used to test the market efficiency at its weak form. Therefore, it is possible to test the weak form of efficiency using daily, weekly and monthly historical price observations of the stock. According to the weak form of an efficient market hypothesis, if a market is efficient at the weak form it is impossible to predict the future prices of securities. There should be no relationship between past prices and future prices. Therefore, prices should be changed randomly. In other word, prices should follow the random walk hypothesis.
There are different statistical methods to test the randomness of time series variables. These methods are classified into parameter and non parameter tests. In most of the literature, parameter testes like unit root tests including Augmented Dickey-Fuller (ADF), Phillips-Perron test (PP) and Kwiatkowski-Phillips Schmidt-Shin (KPSS) have been extensively employed (Palachy,2019). On the other hand, nonparametric testes such as autocorrelation, run test and Markov chains test have been used to test randomness (Dufour, Lepage, & Zeidan, 1982).

After reviewing studies conducted in the similar area of this study, autocorrelation, run test and unit root tests such as Augmented Dickey-Fuller (ADF), Phillips-Perron test (PP) and Kwiatkowski-Phillips Schmidt-Shin (KPSS) selected to analyze the randomness of Borsa İstanbul using 2 indexes and 6 banking sector individual stocks.

4.1. Autocorrelation

According to BusinessDictionary.com, Autocorrelation defined as “a situation in which a time series data is influenced by its own historical values”. Tintner (1965) describes autocorrelation as “lag correlation of a given series with itself, lagged by a number of time units”, where he used the term serial correlation to “lag correlation between two different series.

The autocorrelation of a series x at lag k is calculated as:

$$AC_k = \frac{\sum_{t=1}^{T} (x_t - \bar{x})(x_{t-k} - \bar{x})}{\sum_{t=1}^{T} (x_t - \bar{x})^2}$$ \hspace{1cm} (1)$$

Where: AC_k is the autocorrelation coefficient of series at lag k and \bar{x} is the sample mean of x. If AC_k is nonzero, it indicated that the sequences are serially correlated at first order. If an autocorrelation coefficient is outside the border calculated as the approximate of two standard error, it is significantly different from zero at and it also significant at the 5% significance level (Eviews.com, 2019).

4.2. The Runs Test

The runs test, it is also known as a Wald–Wolfowitz runs test is one of the popular nonparametric tests employed to detect a nonrandom pattern in a time series data. For instance, in a time series that have two or more types of signs, a run is described as a sequence of one or more similar signs which are followed and headed by separate signs. The run test depends on the extent of similar runs (Wang, 2003). For significant samples, we should to calculate a Z-score and using the normal distribution table it is possible to find the critical value of z-scores. To calculate the Z-score of the run test for sizable samples, we can use the following formulas:

$$\bar{R} = \frac{2n_1n_2}{n_1+n_2} + 1$$ \hspace{1cm} (2)$$

Where \bar{R} the mean value of runs is, n_1 is the number of records the first occasion happened, and n_2 is the amount of records the second occasion happened;

Where S_R is the standard deviation of runs;

$$Z^* = \frac{R + h - \bar{R}}{S_R}$$ \hspace{1cm} (3)$$

Where Z^* is the z-score for a normal estimate of the data, R is the quantity of runs, and h is the correction for continuity, ±0.5,

Where;

$$h = +0.5 \text{ if } R < (2n_1n_2/ (n_1 + n_2 - 1) + 1$$ \hspace{1cm} (4)$$

$$h = -0.5 \text{ if } R > (2n_1n_2/ (n_1 + n_2 - 1) + 1$$ \hspace{1cm} (5)$$

To test the randomness of the sample stock price series, we can construct the hypothesis as follows:

H_0: The series of stock prices are changed randomly.

H_1: The series of stock prices are not changed randomly.

Therefore, the decision rule is not rejecting the null hypothesis when the z-score (Z^*) value is between -1.96 and +1.96 at 5% level of significance level (Corder, & Foreman, 2014).
4.3. Unit Root Tests

In a unit root test, the null hypothesis can be stated as “a time series contains a unit root” whereas the alternative hypothesis can be expressed as “a time series is stationary” (Harvey, 2005). The existence of a unit root in a time series indicates that a series is non-stationary. One of the ordinary examples of nonstationary is the random walk hypothesis (Nkoro & Uko, 2016). Consequently, we can test the randomness of historical stock prices through unit root tests.

Unit root test is a common type of parametric tests used to test the stationarity or non-stationarity of a time series. Augmented Dickey-Fuller (ADF), Phillips-Perron (PP) and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests are the most frequently applied unit root tests (Arltová & Fedorová, 2016).

The basic test for unit root is Augmented Dickey-Fuller (ADF). According to ADF, the null hypothesis is stated as a time series are following the random walk. The ADF model can be statistically defined as follows (Sjö, 2008).

\[\Delta x_t = \alpha_0 + \beta_1 + \pi x_{t-1} + \sum_{i=1}^{k} \pi^i \Delta x_{t-i} + \varepsilon_t \]

Where; \(\Delta \) represents first differences, \(\varepsilon_t \) is the random error term which is normally distributed with a mean of zero and \(x_t \) is the log of the price, \(\pi \) is the autoregression parameter and \(k \) is the lagged values of \(\Delta x \). Determining the number of lag is very important. In this study, Akaike Information Criterion (AIC) is used to decide the number of lags. If \(H_0: \pi = 0 \), the series holds a unit root and hence it is non-stationary. We can say also the series is integrated at the first order \(I(1) \). If \(H_1: \pi < 0 \), the series does not have a unit root and it is called stationary. In this case, the series is integrated at \(I(0) \) (Arltová & Fedorová, 2016).

Phillips-Perron (PP) unit root test is a non-parametric adjustment to the basic Dickey-Fuller test. In the non-stationary test of time series data produced through the serial correlated and heteroscedastic unsystematic element, it is repeatedly a problem regarding the choice of lag \(k \) in the model. Phillips and Perron (1988) solved this problem by modifying the basic Dickey-Fuller test as a non-parametric test without the addition of lagged variation terms (Virmani, 2004; Gujarati, 2009).

In contrary with ADF and PP tests, the complementary unit root model launched in 1992 by Kwiatkowski, Phillips, Schmidt and Shin, and known as KPSS test. It assumes that the null hypothesis is the stationarity of the series and the alternative hypothesis is the non-stationarity or the presence of unit root in the series (Syczewska, 2010).

4.4. The Sample and Data

To test the efficiency of BIST in banking sector, six bank stocks listed in BIST such as Ak Bank (AKBNK.IS), Turkey Garanti Bank (GARAN.IS), Turkey Halk Bank (HALKB.IS), Turkey Is Bank (ISCTR.IS), Turkey Vakıflar Bank (VAKBN.IS) and Yapı & Kredi Bank (YKBNS.IS) are selected. The main criterion to select individual banks is to be included in the BIST 30 index. The aforementioned six banks are included in the BIST 30 index. In addition to individual banking sector stocks, BIST 100 and BIST BANKS indexes are also selected.

After identifying the sample individual stocks and indexes, the next decision is regarding data source and study period. In this regard, the weekly adjusted closing prices of selected stocks and indexes are collected from finance.yahoo.com and investing.com. The study period covers from January 4, 2010 to December 20, 2019. Therefore, a total of 520 observations for each stock and index is analyzed. The weekly observation for ISCTR is found starting from February 15, 2010, and a total of 514 weekly observations analyzed. Graphical description of the data series which selected to test the efficiency of BIST 30 index, BIST 100 and BIST BANKS indexes is presented in figure 1 and figure 2 below.

Following studies such as Fama (1965); Solnik (1973); Praetz (1980); Cooper (1982); Parkinson (1984a) and Dickinson & Muragu (1994), the collected weekly prices are converted into a natural logarithm. And then the difference between consecutive log prices are calculated as follows:

\[D_t = \log P_t - \log P_{t-1} \]

Where; \(D_t \) is the difference in log prices from time \(t - 1 \) to time \(t \) and \(P_t \) is an adjusted weekly closing prices of selected stocks for the study. In place of using price changes, logarithm price changes are more appropriate to detect the randomness of normal price changes for a particular share is a function of an increasing trend of the share while using logs is more neutralize from this effect. In the case of run test, there is no difference between the simple and log price changes due to run test concerned with only to the sign of the change, not the amount (Panas, 1990).
5. EMPIRICAL RESULTS

In this section the descriptive properties of the series and selected analyzing methods such as autocorrelation, run test and unit root test results are summarized.

5.1. Descriptive Statistics

One of the basic assumptions of the efficient market hypothesis is the randomness of the series, meaning that the series should follow the random walk hypothesis. If a series is following a random walk, it should be normally distributed. The descriptive statistics which shows the normality of the selected series is presented in Table 1. The descriptive statistics which summarized in Table 1 indicated that the samples’ data are not normally distributed. The p values of all series are less than 5%. This means the normal distribution of the null hypothesis is not accepted. If the series is exactly normally distributed, the skewness and Kurtosis coefficient will be zero. In the case of this study, all 8 stock and index price change series’ skewness and Kurtosis coefficients are different from zero. All series are negatively skewed. Normally distribution is one of the criteria for the randomness of a series. From the perspective of these descriptive statistics, all series are inefficient.

Table 1: Descriptive Statistics of Weekly Log Index and Stock Price Changes

<table>
<thead>
<tr>
<th></th>
<th>BIST_100</th>
<th>BIST_BANK</th>
<th>AKBANK</th>
<th>HALKB</th>
<th>ISCTR</th>
<th>VKBAN</th>
<th>YKBNK</th>
<th>GARAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>0.0014</td>
<td>0.0005</td>
<td>0.0010</td>
<td>-0.0009</td>
<td>0.0012</td>
<td>0.0005</td>
<td>0.0003</td>
<td>0.0013</td>
</tr>
<tr>
<td>Median</td>
<td>0.0030</td>
<td>0.0037</td>
<td>0.0023</td>
<td>0.0000</td>
<td>0.0033</td>
<td>0.0023</td>
<td>0.0029</td>
<td>0.0030</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.0834</td>
<td>0.1326</td>
<td>0.1263</td>
<td>0.1686</td>
<td>0.1804</td>
<td>0.1548</td>
<td>0.1551</td>
<td>0.1611</td>
</tr>
</tbody>
</table>
5.2. Correlation between Selected Samples

The correlation coefficient between series shows whether the log price changes of selected stocks and indexes are move together or not. In this context, the correlation coefficients between them are presented in Table 2. All individual bank stocks are highly correlated with the BIST 100 and BIST BANKS indexes. All single bank stocks are also highly correlated with each other. The minimum correlation coefficient of 0.742. Therefore, it is not recommended diversifying investment only in banking sectors stocks. It also indicates most of the banks are affected similarly by the event happened in the markets.

Table 2: Correlation Matrix between the Sample Bank Stocks, BIST 100 and BIST 100 Indexes

<table>
<thead>
<tr>
<th></th>
<th>BIST 100</th>
<th>BIST BANK</th>
<th>AKBANK</th>
<th>GARAN</th>
<th>HALKB</th>
<th>ISCTR</th>
<th>VKBAN</th>
<th>YKBNK</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIST 100</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIST BANK</td>
<td>0.937</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AKBANK</td>
<td>0.854</td>
<td>0.932</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GARAN</td>
<td>0.870</td>
<td>0.953</td>
<td>0.860</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HALKB</td>
<td>0.830</td>
<td>0.859</td>
<td>0.763</td>
<td>0.774</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISCTR</td>
<td>0.833</td>
<td>0.884</td>
<td>0.788</td>
<td>0.821</td>
<td>0.742</td>
<td>1.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VKBAN</td>
<td>0.860</td>
<td>0.900</td>
<td>0.803</td>
<td>0.833</td>
<td>0.812</td>
<td>0.811</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>YKBNK</td>
<td>0.851</td>
<td>0.883</td>
<td>0.783</td>
<td>0.826</td>
<td>0.752</td>
<td>0.818</td>
<td>0.831</td>
<td>1.000</td>
</tr>
</tbody>
</table>

5.3. Autocorrelation Analysis

In this study, autocorrelation analysis used to identify the randomness of log price changes of selected indexes and stock prices. For all samples, serial correlation is employed for lag 1 to 30. The autocorrelation coefficients for all samples with 30 lags are presented in table 3. The results also presented graphically for each sample from chart 1 to chart 8. The null hypothesis of serial correlation states that there is no serial correlation between series.

The estimated two standard error boundaries calculated as ±0.0439. As the observation of ISCTR is less than other samples, the estimated standard error is estimated as ±0.0441 if the autocorrelation coefficient is larger than two standard error sums, the series is significantly non-zero and indicated the existence of serial correlation. The autocorrelation coefficient which greater than two standard error are bolded in the table and colored red in the autocorrelation chart.

Out of 2 indexes and 6 individual stocks analyzed in this study, 2 indexes and 4 stocks have at least one significant autocorrelation. In the case of BIST 100, lag 14 and lag 29 are significantly autocorrelated. BIST BANKS index has significant autocorrelations at lag 1, 14 and 19. In the case of individual bank stocks such as AKBK, GARAN, HALKB and ISCTR have at least one autocorrelation. AKBK and GARAN are significantly autocorrelated at lag 1 and lag 19. On the other hand, ISCTR log first difference is autocorrelated at lag 14. In contrary, VAKBAN and YAKBNK do not have any significant serial correlations. Depending on autocorrelation analysis, BIST banking sector is not efficient at the weak form of efficient level.
Table 3: Results of Autocorrelation Test

<table>
<thead>
<tr>
<th>Lag</th>
<th>BIST 100</th>
<th>BIST BANK</th>
<th>AKBANK</th>
<th>GARAN</th>
<th>HALKB</th>
<th>ISCTR</th>
<th>VKBAN</th>
<th>YKBAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.077</td>
<td>-0.112</td>
<td>-0.126</td>
<td>-0.176</td>
<td>-0.051</td>
<td>-0.038</td>
<td>-0.048</td>
<td>-0.085</td>
</tr>
<tr>
<td>2</td>
<td>0.052</td>
<td>0.042</td>
<td>-0.011</td>
<td>0.055</td>
<td>-0.049</td>
<td>0.070</td>
<td>0.077</td>
<td>0.046</td>
</tr>
<tr>
<td>3</td>
<td>-0.030</td>
<td>-0.012</td>
<td>0.012</td>
<td>-0.009</td>
<td>-0.003</td>
<td>-0.061</td>
<td>0.024</td>
<td>-0.008</td>
</tr>
<tr>
<td>4</td>
<td>-0.033</td>
<td>-0.018</td>
<td>-0.060</td>
<td>-0.038</td>
<td>-0.009</td>
<td>0.042</td>
<td>-0.017</td>
<td>0.048</td>
</tr>
<tr>
<td>5</td>
<td>0.022</td>
<td>0.041</td>
<td>0.034</td>
<td>0.054</td>
<td>-0.015</td>
<td>0.053</td>
<td>0.025</td>
<td>-0.026</td>
</tr>
<tr>
<td>6</td>
<td>-0.043</td>
<td>-0.060</td>
<td>-0.065</td>
<td>-0.078</td>
<td>0.012</td>
<td>-0.021</td>
<td>-0.012</td>
<td>-0.054</td>
</tr>
<tr>
<td>7</td>
<td>0.022</td>
<td>0.049</td>
<td>0.082</td>
<td>0.027</td>
<td>-0.010</td>
<td>0.037</td>
<td>0.016</td>
<td>0.011</td>
</tr>
<tr>
<td>8</td>
<td>-0.046</td>
<td>-0.042</td>
<td>-0.085</td>
<td>0.000</td>
<td>-0.046</td>
<td>-0.003</td>
<td>-0.041</td>
<td>0.004</td>
</tr>
<tr>
<td>9</td>
<td>-0.050</td>
<td>-0.033</td>
<td>-0.008</td>
<td>-0.040</td>
<td>-0.023</td>
<td>-0.050</td>
<td>-0.031</td>
<td>-0.055</td>
</tr>
<tr>
<td>10</td>
<td>-0.031</td>
<td>-0.039</td>
<td>-0.032</td>
<td>-0.041</td>
<td>-0.006</td>
<td>-0.085</td>
<td>-0.064</td>
<td>-0.039</td>
</tr>
<tr>
<td>11</td>
<td>0.030</td>
<td>0.033</td>
<td>0.035</td>
<td>0.031</td>
<td>0.021</td>
<td>0.061</td>
<td>-0.007</td>
<td>0.063</td>
</tr>
<tr>
<td>12</td>
<td>0.040</td>
<td>0.038</td>
<td>0.023</td>
<td>0.028</td>
<td>0.059</td>
<td>0.019</td>
<td>0.052</td>
<td>0.013</td>
</tr>
<tr>
<td>13</td>
<td>-0.014</td>
<td>-0.033</td>
<td>-0.017</td>
<td>-0.043</td>
<td>-0.025</td>
<td>0.013</td>
<td>-0.041</td>
<td>-0.007</td>
</tr>
<tr>
<td>14</td>
<td>-0.113</td>
<td>-0.092</td>
<td>-0.064</td>
<td>-0.063</td>
<td>-0.135</td>
<td>-0.043</td>
<td>-0.056</td>
<td>-0.017</td>
</tr>
<tr>
<td>15</td>
<td>-0.047</td>
<td>-0.049</td>
<td>-0.047</td>
<td>-0.058</td>
<td>-0.030</td>
<td>-0.043</td>
<td>-0.056</td>
<td>-0.017</td>
</tr>
<tr>
<td>16</td>
<td>-0.029</td>
<td>0.017</td>
<td>0.038</td>
<td>0.035</td>
<td>-0.010</td>
<td>0.059</td>
<td>-0.056</td>
<td>-0.047</td>
</tr>
<tr>
<td>17</td>
<td>0.025</td>
<td>0.025</td>
<td>0.007</td>
<td>0.014</td>
<td>0.012</td>
<td>-0.004</td>
<td>0.024</td>
<td>0.050</td>
</tr>
<tr>
<td>18</td>
<td>0.040</td>
<td>0.063</td>
<td>0.054</td>
<td>0.049</td>
<td>0.060</td>
<td>0.025</td>
<td>0.039</td>
<td>0.041</td>
</tr>
<tr>
<td>19</td>
<td>-0.048</td>
<td>-0.093</td>
<td>-0.115</td>
<td>-0.090</td>
<td>-0.040</td>
<td>-0.087</td>
<td>-0.032</td>
<td>0.037</td>
</tr>
<tr>
<td>20</td>
<td>0.007</td>
<td>0.017</td>
<td>0.002</td>
<td>0.052</td>
<td>-0.046</td>
<td>0.060</td>
<td>-0.005</td>
<td>0.006</td>
</tr>
<tr>
<td>21</td>
<td>0.046</td>
<td>0.017</td>
<td>0.006</td>
<td>-0.007</td>
<td>0.021</td>
<td>0.003</td>
<td>0.004</td>
<td>0.032</td>
</tr>
<tr>
<td>22</td>
<td>0.064</td>
<td>0.077</td>
<td>0.061</td>
<td>0.052</td>
<td>0.089</td>
<td>0.066</td>
<td>0.072</td>
<td>0.071</td>
</tr>
<tr>
<td>23</td>
<td>0.050</td>
<td>0.035</td>
<td>0.022</td>
<td>0.032</td>
<td>0.016</td>
<td>0.002</td>
<td>0.032</td>
<td>-0.009</td>
</tr>
<tr>
<td>24</td>
<td>0.005</td>
<td>-0.035</td>
<td>-0.049</td>
<td>-0.039</td>
<td>-0.003</td>
<td>0.009</td>
<td>-0.007</td>
<td>0.021</td>
</tr>
<tr>
<td>25</td>
<td>0.017</td>
<td>0.015</td>
<td>0.049</td>
<td>-0.009</td>
<td>0.004</td>
<td>-0.031</td>
<td>-0.018</td>
<td>-0.047</td>
</tr>
<tr>
<td>26</td>
<td>0.022</td>
<td>-0.001</td>
<td>-0.006</td>
<td>-0.002</td>
<td>0.069</td>
<td>0.032</td>
<td>-0.007</td>
<td>0.054</td>
</tr>
<tr>
<td>27</td>
<td>0.024</td>
<td>0.028</td>
<td>0.034</td>
<td>0.027</td>
<td>0.003</td>
<td>0.026</td>
<td>0.029</td>
<td>-0.021</td>
</tr>
<tr>
<td>28</td>
<td>0.054</td>
<td>0.019</td>
<td>0.002</td>
<td>0.035</td>
<td>0.006</td>
<td>0.006</td>
<td>0.013</td>
<td>-0.009</td>
</tr>
<tr>
<td>29</td>
<td>0.089</td>
<td>0.063</td>
<td>0.057</td>
<td>0.050</td>
<td>0.055</td>
<td>0.046</td>
<td>0.045</td>
<td>0.069</td>
</tr>
<tr>
<td>30</td>
<td>-0.042</td>
<td>-0.034</td>
<td>-0.028</td>
<td>-0.029</td>
<td>-0.035</td>
<td>-0.054</td>
<td>-0.027</td>
<td>0.001</td>
</tr>
</tbody>
</table>
5.4. Analysis of Runs Tests

The run-tests are conducted for selected 8 series and, the result is presented in Table 4. To decide whether the samples’ series are following a random walk or not z-value and p-value is important. As stated previously in the methodology part, if the z-value is between -1.96 and +1.96, the randomness of the null hypothesis is accepted at a 5% level of the significance level. In this regard, only AKBANK and GARAN stocks log return series has a z-values more than the stated boundaries and they are not following the random walk. According to this test, the rest 6 series does follow the random walk hypothesis.

On the other hand, p-value also used to decide the randomness of the series. If the p-value is less than 5% (P-value ≤ α), we can reject the null hypothesis of randomness. In this concern, the p-values of all series except AKBANK and GARAN are too high and more than 5%. Depending on p-value coefficients, only AKBANK and GARAN does not follow the random walk hypothesis.

In general, the run test results such as z-value and p-value indicated that only two series out of eight does not follow the random walk hypothesis. Depending on run tests, the sample series selected for this study representing the banking sector of BIST does follow the random walk hypothesis except AKBANK and GARAN. Therefore, in light of the runs test, BIST banking sector stock is efficient at the weak form of efficiency.

Table 4: Run Test Results for Weekly Log Returns of Sample Indexes and Stocks

<table>
<thead>
<tr>
<th></th>
<th>BIST 100</th>
<th>BIST BANKS</th>
<th>AKBANK</th>
<th>GARAN</th>
<th>HALKB</th>
<th>ISCTR</th>
<th>VAKBNK</th>
<th>YKBNK</th>
</tr>
</thead>
<tbody>
<tr>
<td># of non-missing obs</td>
<td>520</td>
<td>520</td>
<td>520</td>
<td>520</td>
<td>514</td>
<td>520</td>
<td>520</td>
<td>520</td>
</tr>
<tr>
<td># below mean</td>
<td>246</td>
<td>241</td>
<td>252</td>
<td>250</td>
<td>257</td>
<td>248</td>
<td>254</td>
<td>253</td>
</tr>
<tr>
<td># on or above mean</td>
<td>274</td>
<td>279</td>
<td>268</td>
<td>270</td>
<td>263</td>
<td>266</td>
<td>266</td>
<td>267</td>
</tr>
<tr>
<td># of runs</td>
<td>271</td>
<td>271</td>
<td>287</td>
<td>286</td>
<td>262</td>
<td>262</td>
<td>260</td>
<td>270</td>
</tr>
<tr>
<td>z-value</td>
<td>0.947</td>
<td>1.005</td>
<td>2.306</td>
<td>2.232</td>
<td>0.091</td>
<td>0.382</td>
<td>0.076</td>
<td>0.807</td>
</tr>
<tr>
<td>p-value (2-tailed)</td>
<td>0.344</td>
<td>0.315</td>
<td>0.021</td>
<td>0.026</td>
<td>0.928</td>
<td>0.703</td>
<td>0.940</td>
<td>0.420</td>
</tr>
</tbody>
</table>

5.5. The Unit Root Tests

Three types of unit root tests such as ADF, PP and KPSS tests are employed to assess the randomness of selected series. The test equation that include the constant applied for all testes. The test conducted for all samples at the level I (0) and 1st difference I (1). The three types of unit root test results are summarized in Table 5 below.

Table 5: Unit Root Tests Results

<table>
<thead>
<tr>
<th>Samples</th>
<th>ADF</th>
<th>PP</th>
<th>KPSS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I (0)</td>
<td>I (1)</td>
<td>I (0)</td>
</tr>
<tr>
<td>BIST 100</td>
<td>-1.68</td>
<td>-24.58*</td>
<td>-1.68</td>
</tr>
<tr>
<td>BIST BANKS</td>
<td>-3.15**</td>
<td>-25.47*</td>
<td>-3.41**</td>
</tr>
<tr>
<td>AKBANK</td>
<td>-2.71</td>
<td>-25.81*</td>
<td>-2.81</td>
</tr>
<tr>
<td>GARAN</td>
<td>-2.28</td>
<td>-27.18*</td>
<td>-2.44</td>
</tr>
<tr>
<td>HALKB</td>
<td>-1.83</td>
<td>-23.98*</td>
<td>-1.68</td>
</tr>
<tr>
<td>ISCTR</td>
<td>-2.46</td>
<td>-15.17*</td>
<td>-2.57</td>
</tr>
<tr>
<td>VAKBNK</td>
<td>-2.61</td>
<td>-15.26*</td>
<td>-2.65</td>
</tr>
<tr>
<td>YKBNK</td>
<td>-3.23**</td>
<td>-24.76*</td>
<td>-3.26**</td>
</tr>
</tbody>
</table>

Notes: Test equations that include a constant is employed in all cases.
- Decision criteria of critical value for the ADF and PP tests in case of constant test equation are: -3.44 (1%); -2.87 (5%) and -2.57 (10%).
- Decision criteria of critical value for the KPSS tests in case of constant test equation are: 0.74 (1%); 0.46 (5%) and 0.35 (10%).
- *; **, represent significant at 1%, and 5%, respectively.

At level, ADF and PP test statistics for BIST BANKS and YKBNK have rejected the null hypothesis of a unit root (non-stationary) at 5% significance level and accepted the null hypothesis for the other six samples. Therefore, except BIST BANKS and YKBNK,
all samples have a unit root, meaning that they are non-stationary. Non-stationarity is one of the characteristics of the random walk. Accordingly, it can be concluded that BIST 100, AKBNK, GARAN, HALKB, ISCTR and VAKBNK are efficient at the weak form of efficiency at the level. This conclusion also supported by KPSS results.

At weekly difference, ADF and PP unit root test results rejected the null hypothesis of a unit root (non-stationary) at 1% significance level. Therefore, there is no evidence for the efficiency of the 8 samples analyzed in this study. The inefficiency of the series investigated by ADF and PP also supported by KPSS test results. In general, according to unit test results, BIST 100, BIST BANKS indexes and 6 individual bank stocks analyzed in this study are not efficient at the weak form of market efficiency. The finding of this study is strength the conclusion of the latest study conducted by Tas & Atac (2019).

6. SUMMARY AND CONCLUSION

The aim of this study is assessing the efficiency of Borsa Istanbul banking sector stocks. To test the efficiency of BIST in banking sector, six bank stocks listed in BIST such as Ak Bank (AKBNK.IS), Turkey Garanti Bank (GARAN.IS), Turkey Halk Bank (HALKB.IS), Turkey Is Bank (ISCTR.IS), Turkey Vakiflar Bank (VAKBN.IS) and Yapı & Kredi Bank (YKBNK.IS) are selected. The main criteria to select individual banks is to be included in the BIST 30 index. In addition to individual banking sector stocks, BIST 100 and BIST BANKS indexes are also included.

To assess the weak form of BIST banking sector efficiency, the weekly adjusted closing prices of selected stocks and indexes are collected from finance.yahoo.com and investing.com. The study period covers from January 4, 2010 to December 20, 2019. Therefore, a total of 520 observations for each stock and index is analyzed. The weekly observation for ISCTR is found starting from February 15, 2010, and a total of 514 weekly observations analyzed. The collected data is analyzed using autocorrelation, run test and unit root tests such as Augmented Dickey-Fuller (ADF), Phillips-Perron test (PP) and Kwiatkowski-Phillips-Schmidt-Shin (KPSS).

The autocorrelation test results indicated that only VAKBAN and YAKBNK do not have any autocorrelation. Therefore, depending on autocorrelation, they are efficient at the weak form of efficiency during the study period. On the other hand, the runs test result showed that only AKBANK and GARAN does not follow the random walk hypothesis and the other six samples are efficient at the weak form of efficiency. Finally, the unit root tests such as ADF, PP and KPSS results indicated that all samples do not follow the random walk hypothesis and they are not efficient at the weak form of market efficiency. BIST 100 and BIST BANKS indexes are not efficient according to autocorrelation and unit root test results. Therefore, the three types of tests employed in this study showed a distinctive result and it is difficult to give a general conclusion regarding the efficiency of BIST Banking sector in the weak form. In light of these finding, technical analysts can beat the market by analyzing the BIST banking sector stocks’ historical prices.

REFERENCES

DOI: 10.17261/Pressacademia.2020.1291

Virmani, V. (2004). Unit Root Tests: Results from some recent tests applied to select Indian macroeconomic variables.

EMPIRICAL ANALYSIS OF ENERGY CONSUMPTION AND ECONOMIC GROWTH IN TANZANIA: BASED ON ENGEL AND GRANGER TEST

DOI: 10.17261/Pressacademia.2020.1292
JEFA - V.7-ISS.3-2020(5)-p.250-262

Hamis Miraji Ally Simba¹, Mehmet Fatih Oztek²
¹Ankara Yildirim Beyazit University, Department of Economics, Ankara, Turkey. hamisimiraj2020@gmail.com, ORCID: 0000-0001-8915-9971
²Ankara Yildirim Beyazit University, Department of Economics, Ankara, Turkey. mfoztek@yahoo.edu.tr, ORCID: 0000-0002-7619-6375

Date Received: June 21, 2020
Date Accepted: August 5, 2020

ABSTRACT
Purpose - This article aims to investigate the effect of energy consumption on economic growth in Tanzania. It is a quantitative investigation that is structured by the time series data from the World Bank (WB) database which started from 1990 to 2019. The article uses variables of Energy consumption (EC) and Economic growth (GDP). The variables are measured in GDP (Constant US$) and EC (MTOE).
Methodology - To obtain the significant estimated results, this study uses econometric tools for both theoretical and empirical analysis such as Augmented Dickey-Fuller (ADF) test for identifying stationary and nonstationary time series data, Engel and Granger test for determination of the existence or absence of cointegration relationship, Vector Error Correction Model (VECM) for determining the speed of adjustment (ECT) and Classical Granger-causality test for a causal relationship between economic growth and consumption.
Findings - The core findings of the study are; the cointegration relationship between Energy consumption (EC) and Economic growth (GDP), a bidirectional causal relationship between energy consumption (EC) and Economic growth (GDP) in Tanzania. Therefore, the study accepts the energy feedback hypothesis that revealed to exist both a long-run effect and short-run effect between the energy consumption and economic growth in Tanzania.
Conclusion - The estimated results of this study provide the information to Tanzanian policymakers with a new dimensional approach to Tanzanian economic growth through an increase in energy consumption use. Although Tanzanian government has a huge and long term sustainable project of increasing energy power by adding 2115megawatts to Tanzanian national grid using the Stigler gorge or Julius Nyerere Hydroelectric power at Rufiji River but also Tanzania should invest to the short energy projects consumptions that can facilitate and improve the economic development of domestic hoods.

Keywords: Tanzania, GDP, EC, Engel and Granger test, Granger Causality test.
JEL Codes: B23, Q43, Q55

1. INTRODUCTION
Energy sources are key elements or an engine of the country's GDP. When efficiency energy sources are implemented well and established within the country, it often contributes by improving the GDP of the country. EC and GDP have a direct correlation. Sorely, increasing the rate of EC in the economic sectors like an agricultural sector in the case of cultivating cash products using machines, transportsations and the communication sector, investment, and trade sector contributes a significant performance on the country's GDP. The country which has better economic performance is associated with advanced in science and technology which is related to effective investments in terms of public and private sectors. The demand of energy consumptions within the state is almost high. More energy will be demanded to facilitate economic activities. It is different from countries that perceive or consume less amount of energy per year definitely, they cannot produce standard and good quality services from the industries that compete or meet international world market requirements. Less distribution of energy consumption affects the housing hood, firms, and industries economically by consuming a small amount of energy on economic activities. It makes it difficult for the domestic hood to achieve a good and standard of their livelihood. Therefore EC has a direct significant contribution to the GDP of the country. Sorely energy
consumption often depends on the availability of energy sources. Therefore, Tanzania has abundant energy sources that are significant to the GDP of the country. The energy sources which are found in Tanzania are natural gas, biomass, geothermal, brown coal, hydroelectric power, nuclear materials, and solar power energy through which its domestic consumptions are very low (Napendael, 2004). Other energy sources are agriculture residual, solid factories waste, animal dang, and landfill biogas. Natural gas reserves in the offshore of Songo-Songo are estimated to be at 783BCF (Besta, 2013), Mnazi Bay, the natural gas has been discovered (Boma, 2013.15-19). Msimbati area has reserved of natural gas that it makes about 46Tcf to 55Tcf. Natural gas has discovered in the year of 2009 and 2013. The area of natural gas is found in the southern part of Tanzania in the region of Mtwara which has got a massive deposit of natural gas. Therefore it makes Tanzania to be accounted among the country that has enough reservation of the natural gas in the world (Kamat, 2017.304-306). The other areas that contain natural gas like Mkuranga, Kilwa North, and Nanyuki, generally the amount of natural gas that deposited in Tanzania is about 27trillion (Kusekwa and M.A, 2013. 241). Table 1 indicates energy sources that are found in Tanzania concerning to their regions and districts.

Table 1: Energy Sources in Tanzania

<table>
<thead>
<tr>
<th>Energy Source</th>
<th>Amount of Deposition</th>
<th>Region</th>
<th>District</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural gas</td>
<td>30bcf [IEA,2013]</td>
<td>Lindi</td>
<td>Songwe-Songwe Island</td>
</tr>
<tr>
<td>Natural gas</td>
<td>817bscf [RPS, Energy Canada]</td>
<td>Mtwara</td>
<td>Mnazi Bay</td>
</tr>
<tr>
<td>Natural gas</td>
<td>30bcf [IEA,2013]</td>
<td>Lindi</td>
<td>Songo- Songo Island</td>
</tr>
<tr>
<td>Natural gas</td>
<td>817bscf [RPS, Energy Canada]</td>
<td>Mtwara</td>
<td>Mnazi Bay</td>
</tr>
<tr>
<td>Natural gas</td>
<td>46Tcf to 55Tcf [TPDC]</td>
<td>Mtwara</td>
<td>Msimbati</td>
</tr>
<tr>
<td>Coal</td>
<td>9.1bt extra per capital year [TMAA]</td>
<td>Mbeya</td>
<td>Kiwira</td>
</tr>
<tr>
<td>Coal</td>
<td></td>
<td>Ruvuma</td>
<td>Ngaka</td>
</tr>
<tr>
<td>Geothermal</td>
<td></td>
<td>Arusha</td>
<td>Lake Natron</td>
</tr>
<tr>
<td>Geothermal</td>
<td></td>
<td></td>
<td>Lake Manyara</td>
</tr>
<tr>
<td>Geothermal</td>
<td></td>
<td>Kilimanjaro</td>
<td>Lake Natron</td>
</tr>
<tr>
<td>Geothermal</td>
<td></td>
<td></td>
<td>Lake Manyara</td>
</tr>
<tr>
<td>Geothermal</td>
<td></td>
<td></td>
<td>Meru province</td>
</tr>
<tr>
<td>Geothermal</td>
<td></td>
<td></td>
<td>Rungwe</td>
</tr>
<tr>
<td>Geothermal</td>
<td></td>
<td>Rukwa ,Morogoro,Dododma, Singida, Rufiji and Shinyanga</td>
<td></td>
</tr>
<tr>
<td>Uranium</td>
<td></td>
<td>The northern part of Tanzania</td>
<td>Tarosero volcano-sedimentary rocks of Chimala</td>
</tr>
<tr>
<td>Uranium</td>
<td></td>
<td>The Central part of Tanzania</td>
<td>Manyoni, Bahi, Mbuga, Makotopola and Lake Hombolo</td>
</tr>
<tr>
<td>Uranium</td>
<td></td>
<td>The southern part of Tanzania</td>
<td>Namtumbu (Mtakuja and Madaba)</td>
</tr>
</tbody>
</table>

IEA	TPDC	TMAA	tcf	bcf	RPS, Canada
International Energy Agency | Tanzania Petroleum Development Cooperation | Tanzania Minerals Audit Agent | Trillion cubic feet | Billion cubic feet | Rural Planning Services energy company in Canada |
The main focus of this study is to explore the relationship between EC and the GDP of Tanzania. Therefore, the study intends to address the following questions; the presence of the cointegration effect between EC and GDP in Tanzania, what kind of causal relationship is found between the EC and GDP, does it, a unidirectional or bidirectional relationship between EC and GDP. To support these equations this study cements the following hypothesis; EC depends on GDP energy in Tanzania (conversation hypothesis), EC affects GDP in Tanzania (economic growth), GDP and EC depend on each other (feedback relationship, and the last assumption. There is a neutral relationship between GDP and EC in Tanzania (Neutral relationship) (Ocal and Aslan, 2013:495). The study contributes by adding knowledge about issues the EC and GDP in the academic world.

The study uses quantitative methods to examine a specific case study and made use of empirical research methods. More emphasis has been laid on secondary sources of data from the World Bank database. The study applies the ADF test, Engel-Granger test, VECM, Granger Causality test, and Post estimations test for data analysis. The policymakers will develop energy and economic policies that will contribute a significant effect on the GDP of Tanzania. Furthermore, it adds a new dimension in the literature review especially in the field of EC and GDP in Tanzania. The study spans from 1990 to 2019. Therefore the justifications of the topic have drawn great attention from many thoughts of scholars in the economic field, especially in EC and GDP, the pioneer Kraft was the emphasis the investigation of EC and GDP economic (Kraft, 1978). The organization of the study is constructed as follows; the next sections are reviews of the literature, analysis of data, methodology, estimated results, literature, and conclusion.

2. LITERATURE REVIEW

Different Thoughts of schools discuss the effect of EC and GDP, how the causal relationship among the variables behave. They come with the conclusion that the causal relationship among the variables is not constant. The relationship between EC and GDP depends on the different factors that include economic factors, technological factors, demographic factors, and empirical methodological factors. Thus to determine the connection between EC and GDP is found to be non-consensus. The Kraft contributed a lot to EC and GDP (Kraft, 1987). Kraft found unidirectional moves from the GDP to EC. In the US the bivariate model through the study of Kraft no causal relationship between EC and GDP (Kraft, 1987). The Kraft contributed a lot to the determination of the causal relationship between EC and GDP. Kraft found unidirectional moves from the GDP to EC (Kraft, 1987). Also, Kraft investigated the causal relationship between EC and GDP in the U.S. He investigated by applying the bivariate model through the study of Kraft, and he found no causal relationship between EC and GDP (Kraft, 1987). Liu (2017) in his study, related energy consumption, and economic growth argued that higher an increase of EC leads to a higher GDP (Liu and Zhang. 2015, p.401).

The research revealed a bidirectional relationship between EC and GDP. Odhiambo (2008) conducted his research related to EC and GDP in Tanzania. He used three variables identified as EC, GDP, and Electricity. The study applied an ARDL bound test for finding the cointegration. The empirical analysis from this study found that there is cointegration effect between EC and GDP. The results show that there is a unidirectional causal relationship that moves from EC to GDP. Seemingly there is a causal connection that flows from Electricity to GDP (Odhiambo, 2009). Nyoni (2013) investigates the relationship between EC and GDP in Tanzania. He applied the cobb-Douglass production function that includes EC, capital investment, and labor. The study finds the unidirectional causal relationship which is running from the GDP to EC (Nyoni, 2013). Vinay (2017) conducted his research identified as the powering of the nation. From his study included natural gas and GDP. Vinay argued Tanzania can use natural gas protection to employ Tanzanian. Solely the GDP of the country will be improved by reducing the unemployment rate and to increase the employment gap to the communities (Kamat.2017). Another study was conducted by Campo and Sarmiento (2013) in Latin America. The study examines the relationship between EC and GDP of 10 Latin American states. The study applied Pedroni’s test for cointegration and the outcomes from the study show the bidirectional causal relationship between EC and GDP, and long-relationship between EC and GDP was found (Campo and Sarmiento, 2013).

Not all the studies show the positive correlation between EC and GDP, there some studies that show a negative relationship between EC and GDP. For instance, the study conducted by Aqeel and Mohammed (2001) related to EC and GDP in Pakistan. The study applied technic of cointegration and Hsiao version of the Granger causality test. In this study, the findings show that EC leads to petroleum consumption and no causal relationship between Petroleum consumption towards GDP (Aqeel and Mohammed, 2001). Makala (2019) investigates the impact of natural gas on GDP in Tanzania. He applied the ARDL test and Granger causality test to examine the causal relationship between natural gas and GDP. Makala argued that there is no cointegration effect between natural gas and GDP in Tanzania. The analysis revealed that there is no long-run relationship between natural gas and GDP in Tanzania (Makala and Zongmin, 2019).

According to Sankaran (2019) investigates the effect of electricity consumption for industrial countries. Sankaran used ARDL bound test and Toda-Yamamato. The study revealed that electricity consumption has a significant contribution to industrial countries. Therefore electricity distribution to the industries leads to the enhancement of technological productions in the
industries (Sankaran and Das, 2019). The following table represents different studies with different results as the literature reviews that demonstrate the study of EC and GDP are non-consensus.

Table 2: Energy Consumption and Economic Growth Studies

<table>
<thead>
<tr>
<th>Authors</th>
<th>Countries</th>
<th>Methodologies</th>
<th>Limitation</th>
<th>Results</th>
<th>Hypothesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lee (2008)</td>
<td>Taiwan</td>
<td>Tar</td>
<td>(1955,2003)</td>
<td>EC leads to GDP</td>
<td>Growth</td>
</tr>
<tr>
<td>Pao and Tsai (2011)</td>
<td>Russia</td>
<td>Engel-Granger</td>
<td>(1990,2007)</td>
<td>GDP leads to EC</td>
<td>feedback</td>
</tr>
</tbody>
</table>

Sub-Saharan Africa researches for energy and economic growth

<table>
<thead>
<tr>
<th>Authors</th>
<th>Countries</th>
<th>Methodologies</th>
<th>Limitation</th>
<th>Results</th>
<th>Hypothesis</th>
</tr>
</thead>
</table>

Multiple countries study Non-Sub

<table>
<thead>
<tr>
<th>Authors</th>
<th>Countries</th>
<th>Methodologies</th>
<th>Limitation</th>
<th>Results</th>
<th>Hypothesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>India</td>
<td></td>
<td></td>
<td></td>
<td>GDP ≠ coal</td>
<td>Neutral</td>
</tr>
<tr>
<td>Japan</td>
<td></td>
<td></td>
<td></td>
<td>GDP → Coal</td>
<td>conservation</td>
</tr>
<tr>
<td>S. Korea</td>
<td></td>
<td></td>
<td></td>
<td>GDP ≠ coal</td>
<td>Neutral</td>
</tr>
<tr>
<td>S.Africa</td>
<td></td>
<td></td>
<td></td>
<td>GDP ≠ coal</td>
<td>Neutral</td>
</tr>
</tbody>
</table>

Sub-Saharan African studies

<table>
<thead>
<tr>
<th>Authors</th>
<th>Countries</th>
<th>Methodologies</th>
<th>Limitation</th>
<th>Results</th>
<th>Hypothesis</th>
</tr>
</thead>
</table>
The thoughts of scholars demonstrate that the relation between EC and GDP in not constant. Mostly the relationship depends on the demographic conditions, technological invention, kind of methodology that has been applied during the econometrical analyzing the results. On top of that, the level of the country’s income is determining the fact of the relationship between the GDP and EC in the country. For instance, the industrial countries the rate of its EC is different in terms of its consumption compared to the nonindustrial countries.

3. DATA AND METHODOLOGY

Annual data of Energy consumption (EC) measured in Millions Tone equivalent (MTOE) and Economic growth (GDP) measured in 2010 US$ are obtained from WDI and UNCTD from the year 1990 to 2019. This study is based on a quantitative methodology in which all statistical calculations and estimations are presented. Consequently, this section focuses on theoretical and empirical analysis. It is started with theoretical analysis and ends with empirical analysis. This study uses an econometric model to analyze the estimated results. The econometric tools which are used in this study are ADF, Engel-Granger test, VECM, and Granger causality. The econometric tools have been used to specify, contrast, and compare the indicated results from the hypothesis theories, after being tested.

Unit root test; if the variable is discovered to be nonstationary, then it should be converted from nonstationary to stationary by taking the differentiation. The process of differentiation converts the variable from Nonstationary series to Stationary is called the order of integration and is presented by L (d) (Charemza and Deadman, 1997).

Augmented Dicky and Fuller test is a statistical test that has been proposed by Sargan and Bhargava 1983 (Harris, 1992.p.401-402). The ADF has been used to identify stationary or nonstationary of GDP and EC variables (Giovannetti, 1987.p.494). By using the ADF test all variables must integrate at the same order (Saboori, 2013.p.402). Therefore, the variables should be integrated at the same order, the process can be continued up to second order l(2) if and only the stationary conditions are not found to be at the first level (Giovannetti,1987.p.494). Mathematically the ADF can be represented as follows:

$$\Delta X_t = \beta X_{t-1} + \sum_{i=1}^{p} \Theta_i X_{t+i} + \epsilon_t$$ \hspace{1cm} (1)$$

Where p represents the maximum value of the lag length, and ϵ_t stands for the error term. There are different types of lag length. However, in this research, the selected lags are AIC and SBC lags. The criteria of choosing these lag lengths are based on their properties of accepting the small number of data size, and in most cases, the lags are used by OLS and ECM (Ibrahim, 1999.p.220 - p.222). Ibrahim, M. (1999). The chosen lag AIC and SBC have developed a model selection criterion, especially for likelihood estimation and maximization techniques. It minimizes the natural logarithmic of residual of adjusted squares for sample size " n “ and “k” represents parameters (Maysami and Koh,2000.p.84). Akaike Information Criterion lags can be represented as follows

$$AIC = n \ln \text{(sum of the residual square)} + 2k$$

where “n” represents sample size and “k” represent parameters and SBC lag, it minimizes the natural

$$SBC = n \ln \text{(Residual sum of squares)} + k \ln(n)$$
The AIC and SBC are models that are created just for maximization likelihood estimation techniques.

The ECM is built to represent the information lost in the difference. It is used to determine cointegration. In this analysis, two variables have been imported, which are GDP and EC, mathematically will be presented as follows:

\[\Delta \text{GDP} = \alpha_1 * \alpha_{11} \text{ECT}_{t-1} + \sum_{i=1}^{p-1} \beta_{1i} \Delta \text{GDP}_{t-i} + \sum_{i=1}^{p-1} \theta_{1i} \Delta \text{ECT}_{t-i} + \epsilon_{1t} \]

\[\Delta \text{ECT}_t = \alpha_2 + \alpha_{21} \text{ECT}_{t-1} + \sum_{i=1}^{p-1} \beta_{2i} \Delta \text{GDP}_{t-i} + \sum_{i=1}^{p-1} \theta_{2i} \Delta \text{ECT}_{t-i} + \epsilon_{2t} \]

Equations 2 and 2 represent the ECM with ECT. The equations are used to determine the cointegration. The ECT at the equations is used to measure cointegration and coefficients parameters indicate the short-run. The probability of ECT for both EC and GDP should be significant and lower than 5%. Negative Signe represents a convergence of economic trends. The negative sign (-) indicates the presence of the cointegration. Generally, ECT intends to measure the speed of EC to return to the normal equilibrium after diverging from the normal trend.

The ECT can be represented as follow;

\[\text{ECT}_{t-1} = \text{GDP}_{t-1} + (\alpha_{11}/\alpha_{12}) \text{EC}_{t-1} \]

\[\text{ECT}_{t-1} = \text{EC}_{t-1} + (\alpha_{11}/\alpha_{21}) \text{GDP}_{t-1} \]

The ECT is also representing the Error of correction or speed of adjustment of research (Ang, 2007, p.475).

The ECM is an efficiency to minimize or to prevent carrying some errors from one step to another during the analysis phase. The ECM estimates the long-term effects and analyzes the short-term adjustment process within the same model (Maysami, 2000,p.83; Bhaskara, 2007, p.17). The ECM occupies two or more variables; since the economic model of this research contains two variables, therefore, ECM is justified to be suitable for this study. The most advantage of ECM has a smooth and straightforward interpretation for determining the long-run term and short return term equations.

Error Correction Model is built up if and only if the GDP and EC are cointegrated. The cointegration between the GDP and EC indicates the long-run effect. ECM contains lag length, represented by letter p. Thus the lag lengths in the equation model are composed by (p-1) for GDP and EC where p stands for lags in ECM. The theoretical approach is based on testing EC and GDP using the Granger causality test (Granger, 1969, p.200). In addition to that, Engel Granger (1987) makes a significant contribution to the co-integration technique towards testing of EC and GDP. The presence of the cointegration process leads to the finding of error correction technic (ECT), which is based on the adjustment of disequilibrium of the speed of the long-run effect between GDP and EC. General equations of ECM together ECT and their lags are represented as follows;

\[\Delta Y_t = \sum_{i=1}^{k} \beta_{1i} \Delta X_{t-i} + \sum_{i=1}^{r} \delta_{1i} \text{ECT}_{r-t-i} + \epsilon_{1t} \]

\[\Delta X_t = \sum_{i=1}^{k} \beta_{2i} \Delta Y_{t-i} + \sum_{i=1}^{r} \delta_{2i} \text{ECT}_{r-t-i} + \epsilon_{2t} \]

From the two equations coefficients of \(\beta \) and \(\delta \) stands for explanatory of \(\Delta Y \), \(\Delta X \), and ECT respectively, letter k, n represents the maximum numbers of the explanatory variables, and ‘r’ represents the number of co-integration equation. For determination of the causal relationship between the dependent variables of \(\Delta Y \) and \(\Delta X \), the parameters of \(\beta_{1i} \) for \(\Delta X_{t-1} \), \(\Delta Y_t \) and parameters of \(\beta_{2i} \) for \(\Delta Y_{t-1} \) both respectively cannot be equal to zero. When the coefficients become equal to zero, means the related independent variable also becomes equal to zero. Therefore the causal relationship between the two variables cannot be found. This is the reason why these coefficients are not equal to zero.

Equation 6 and 7 represent the change of the dependant variables which is equal to \(\sum \Delta X \), and \(\sum \Delta Y \), represent the change of the sum of the explanatory variables, coefficients, ECT, white noises, and with their respective number of lags (Kar and Pentecost, 2000, p.9). The equations above are VECM which is acting as the source of the causation between GDP and EC. The test of the joint aggregate sum of the number of lags of every regress using Wald test, the second test is associated with lagged ECT statistic and the third, the test of joint used to sum of the regress variable and ECT’s lagged statistic, this test is recognized as the strong propensity test (Charlemenza and Deadman, 1997). For more clarification of this test, we can have an example if the null hypothesis of EC which states that GDP does not cause granger relation is ignored if \(\beta_{1i} \) is significantly different from zero, the same analysis if the null hypothesis is not obeyed if \(\delta_{1i} \) is significant or \(\beta_{1i} \) and \(\delta_{1i} \) are jointly significant apart of zero (Kar and Pentecost, 2000. p.10).

4. ESTIMATED RESULTS

This section represents an empirical analysis that represents the findings obtained through the econometric technique, as highlighted from the methodology section. It started by checking the ADF test then followed other econometric tools. The
estimations are determined once the causal co-integration is found. After determining the co-integration, the stability test using the CUSUM and CUSUMSQ, correlogram Q test, correlogram, and AR test are used to determine the stability of parameters. To archive the best efficiency of the analysis, the stationary test should be included to monitor the stationarity of the data. Therefore the following part describes the stationarity of the time-series data.

Estimated results; ADF test defines the existence of stationary data from the time series. The stationarity of the data is related to the order of integration, therefore ADF indicates the order of integration during the empirical analysis. The essence of stationary data is to help the analysis phase to be free from the problem of spurious regression. The problem of spurious might happen if the dependent variable shows uncorrelated series with independent variables and the relationship between them is significant but the two variables are not correlated. The research uses a standard ADF test for stationary (Liew, 2004,p.314). The table below is the ADF table that computed using the time series data from 1990 to 2019, which contain variables of the model obtained at the level and I(1).

Table 3: Augmented Dicky–Fuller (Constant and Trend)

<table>
<thead>
<tr>
<th>Var</th>
<th>At level I (0)</th>
<th>First difference (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t-stat</td>
<td>Prob**</td>
</tr>
<tr>
<td>GDP</td>
<td>-1.766273</td>
<td>0.6938</td>
</tr>
<tr>
<td>EC</td>
<td>-2.038669</td>
<td>0.5558</td>
</tr>
</tbody>
</table>

Note, that *, **, *** represent the 10%, 5%, 1% level respectively

From the ADF indicates that the Critical value at 5 percent and 1 percent are 0.036, and 0.0042 respectively. The ADF indicates that the GDP and EC are integrating at I(1). Then, the analysis can proceed with estimating an OLS regression of GDP and EC by subjecting the residuals to a stationary test, and if the residuals are stationary, then EC and GDP integrating. Below are OLS estimation results.

Table 4: Residuals of GDP

<table>
<thead>
<tr>
<th>Independent var</th>
<th>coefficient</th>
<th>Std error</th>
<th>t-statistic</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>542.8538</td>
<td>936.3458</td>
<td>0.579758</td>
<td>0.5669</td>
</tr>
<tr>
<td>EC (MTOE)</td>
<td>8.064446</td>
<td>0.275644</td>
<td>29.25671</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Table 5: Residuals of EC

<table>
<thead>
<tr>
<th>Variable</th>
<th>coefficient</th>
<th>Std error</th>
<th>t-statistic</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>21.09089</td>
<td>114.9566</td>
<td>0.183468</td>
<td>0.8558</td>
</tr>
<tr>
<td>GDP(constant 2010 US$)</td>
<td>0.120209</td>
<td>0.004109</td>
<td>29.25671</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Tables 4 and 5 both indicate the simple regression models in which GDP stands for the dependent variable for 4 EC is an independent variable, while 5 EC is dependent and GDP is independent variables. The letter C for both tables stands for the constant of the regression equations. The regression equations show that there are positive correlations between variables. The coefficients of EC and GDP are significant because their probabilities are less than 5%. Therefore, both coefficients have a positive correlation to their dependent variables. In table 4, the coefficient estimate of EC is 8.06, meaning that the one-unit increase in EC leads to an 8.06 change of economic growth. Also, in table 5, the coefficient estimate of GDP is 0.12, meaning that the one-unit increase in GDP leads to 0.12 changes in EC. The aim of estimating regression equations is to obtain the rapport of EC and GDP simultaneously finding residual equations which are used in finding the co-integration between the GDP and EC. The next step is to find the ADF test for the residual values.

Table 6: Augmented Dickey-Fuller (ADF) Residuals at I (0)

<table>
<thead>
<tr>
<th>GDP is the dependant variable</th>
<th>Null hypothesis: U is nonstationary</th>
<th>t-statistic</th>
<th>Prob*</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADF statistic</td>
<td>-3.6</td>
<td>0.053</td>
<td></td>
</tr>
<tr>
<td>Critical t-stat values :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1%</td>
<td>-4.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5%</td>
<td>-3.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10%</td>
<td>-3.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-squared</td>
<td>0.708615</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Durbin-Watson stat</td>
<td>1.833156</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 7: Augmented Dickey-Fuller (ADF) Residual I (0)

<table>
<thead>
<tr>
<th>Null hypothesis: U nonstationary</th>
<th>t-statistic</th>
<th>Prob*</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADF-stat</td>
<td>-3.517359</td>
<td>0.0525</td>
</tr>
<tr>
<td>Test for t-critical:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1%</td>
<td>-4.33</td>
<td></td>
</tr>
<tr>
<td>5%</td>
<td>-3.59</td>
<td></td>
</tr>
<tr>
<td>10%</td>
<td>-3.22</td>
<td></td>
</tr>
<tr>
<td>R-sqr</td>
<td>0.709</td>
<td></td>
</tr>
<tr>
<td>D.Watson stat</td>
<td>1.833</td>
<td></td>
</tr>
</tbody>
</table>

Tables 6 and 7 both indicate ADF t-stat values, which 3.558900 and 3.517359 respectively, are greater than the Engel and Granger, which is 3.28 ADF of critical test statistics at 5% which are significant for both levels respectively. This suggests the hypothesis of no cointegration is ignored, and analysis indicates that the presence of cointegration for both table 6 and table 7. It concludes that GDP and EC, EC and GDP are cointegrating and long-run is present. Furthermore, when Durbin-Watson and R-square are compared, the Durbin-Watson statistic is greater than R-square indicates that the system model of the data is free from the spurious problem.

Table 8: Error Correction Technique (ECT) of ∆GDP

<table>
<thead>
<tr>
<th>Independent variables</th>
<th>Coefficient</th>
<th>Std error</th>
<th>t-statistic</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>1136.101</td>
<td>361.0291</td>
<td>3.146840</td>
<td>0.0042</td>
</tr>
<tr>
<td>∆(EC)</td>
<td>2.345391</td>
<td>1.000718</td>
<td>2.343709</td>
<td>0.0273</td>
</tr>
<tr>
<td>ECT</td>
<td>-0.360502</td>
<td>0.120008</td>
<td>-3.003977</td>
<td>0.0060</td>
</tr>
</tbody>
</table>

Note: ECT represents the Error Correction technique/speed of adjustment, ∆EC represents the first difference of energy consumption variable, C represents a constant value

Table 9: Error Correction Technique (ECT) of ∆EC

<table>
<thead>
<tr>
<th>Independent variables</th>
<th>Coefficient</th>
<th>Std error</th>
<th>t-statistic</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>48.93487</td>
<td>77.70457</td>
<td>0.629755</td>
<td>0.5346</td>
</tr>
<tr>
<td>∆(GDP)</td>
<td>0.080674</td>
<td>0.0333744</td>
<td>2.390780</td>
<td>0.0247</td>
</tr>
<tr>
<td>ECT</td>
<td>-0.444319</td>
<td>0.191948</td>
<td>2.314791</td>
<td>0.0291</td>
</tr>
</tbody>
</table>

Note: ECT represents Error Correction Technique/ speed of adjustment, ∆GDP represents the first difference of economic growth variable and C represent the constant value

Tables 8 and 9 both report the estimated ECM results of both ∆GDP and ∆EC models. From empirical analysis shows that the ECT is negative and significant, this indicates that the GDP and EC convergent to equilibrium. For instance, Table 8 demonstrates ECT is -0.360502, suggesting that the ∆GDP model adjusts itself to equilibrium by 36.05% annually. The ECT is significant at a 1% level, while Table 9 shows that ECT is -0.444319 suggesting that the ∆EC model adjusts itself to equilibrium by 44.43% annually. Again, the negative of ECT indicate the cointegration of GDP and EC in this model. The coefficient of ∆GDP as 0.080674 represents the short-run effect is significant at 5% because its probability value is 0.024, which is less than 5% at a significant level. The coefficients of the short-run have the following meaning economically; first, the EC attained in Tanzania is the most significant short-run determinant value in the GDP of Tanzania. The significant effect of EC on GDP indicates that the appropriate EC was being used in the growth of Tanzania’s economy. Second, the GDP attained in Tanzania is the most significant short-run determinant value in the EC of Tanzania. Third, the significant positive effect of EC on GDP indicates that the appropriate EC was being used in the growth of the Tanzanian economy to the same case to the significance of GDP on EC indicates that the appropriate GDP was being applied to the EC of Tanzanian. The analysis shows that EC and GDP are depending on each other. Therefore However Tanzania government is engorging to the massive long-run projects for energy productions like Stigler’s Gorge Hydropower Project. Natural gas also should have short plan strategies for energy productions. It seems that there are significant contributions to the short-run effects of EC on the GDP of Tanzania.
Table 10: Cointegration Equation

<table>
<thead>
<tr>
<th>Independent Variables</th>
<th>Coefficient</th>
<th>Std error</th>
<th>t-stat</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC</td>
<td>7.937856</td>
<td>0.50707</td>
<td>15.6544</td>
</tr>
<tr>
<td>C</td>
<td>12.528</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The table above indicates the cointegration equation, which indicates a significant correlation between EC and GDP in Tanzania.

Table 11: Vector Error Correction Model (VECM)

<table>
<thead>
<tr>
<th>ECT of GDP</th>
<th>Coefficient</th>
<th>Std error</th>
<th>t-stat</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECT of GDP</td>
<td>-0.343417</td>
<td>0.17987</td>
<td>-1.91429</td>
<td>0.0060</td>
</tr>
</tbody>
</table>

The two tables show VECM and ECT as the adjustment speed of GDP per year. The analysis indicates that the ECT of GDP is 34.34. The negative sign has a significant meaning. It represents the cointegration, sorely long run has been shown among the EC and GDP.

Table 12: Causal Relationship between GDP and EC (using Wald test)

<table>
<thead>
<tr>
<th>Dep Var</th>
<th>Wald-test</th>
<th>t-stat</th>
</tr>
</thead>
<tbody>
<tr>
<td>∆GDP</td>
<td>ΣΔEC</td>
<td>ECM_{-1}</td>
</tr>
<tr>
<td></td>
<td>X^2(1)=7.614 (0.0058)**</td>
<td>-4.628905 (0.001)***</td>
</tr>
<tr>
<td>∆EC</td>
<td>X^2(1)= 4.538443 (0.0331)**</td>
<td>-0.776405 (0.0462)**</td>
</tr>
</tbody>
</table>

Table 13: Joint Sources of Causation Using Wald test

<table>
<thead>
<tr>
<th>Wald Test</th>
<th>X^2(2)= 5.184489 (0.0749)**</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ΣΔEC, ECM_{-1})</td>
<td>X^2(2)= 25.39298 (0.0)*</td>
</tr>
</tbody>
</table>

1. EC represents Energy consumption
2. GDP represents Economic growth
3. ECM represents Error Correction Model
4. (-1) represents the number of lag
5. Δ represents the first difference
6. Σ sum of coefficients with respective lags
7. *, **, *** represent significant level 0.1, 0.05, 0.01 respectively
8. () p-value

The sources of causation from the table 12 with three estimations can be explained as follows; the first case is a test of the joint which is aggregated together with a lag of independent variable, in turn, using a Waldy^2. It is observed that in table 12, the ∆GDP dependent variable and ΣΔEC independent factor. Independent ΣΔEC concern its lag is tested and shows that the ΣΔEC is significant at 5%. In the same case, when the ΔE dependent variable and ΣΔGDP independent variable, concerning its lag, is tested, it shows that the ΣΔGDP is significant at 5%. The second case is the t-statistic test on the lagged ECM and the value of ∆GDP as the dependent. Shows the ∆GDP is significant, and the ECM of ΔE is significant at 5%. The last in table 8.1 is about the joint test between the sum of the variables with their lags with ECM shows that the (ΣΔEC, ECM_{-1}) and (ΣΔGDP, ECM_{-1}) both are significant. Table 12 indicates the causation source from the analysis is ECT of four cases (between ∆GDP and ∆GDP, ∆EC, and ∆GDP) and shows the ECT is significant at a different level of 5% and 10%. Not only ECT is acting as the source of the causation, but there some other sources of causation such as the statistical significance of the explanatory variables. Table 13 indicates the causal relationship between GDP and EC by corresponding to the ECT. Empirical analysis shows connections that move from EC to GDP, meaning that the EC depends on GDP to the same case the causality states run from GDP to EC. The analysis shows the bidirectional causal relationship between EC and GDP in Tanzania.
Table 14: Summary of the Sausal Relationship between EC and GDP

<table>
<thead>
<tr>
<th>∆EC to ∆GDP</th>
<th>Energy consumption leads to Economic growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>∆GDP to ∆EC</td>
<td>Economic growth leads to energy consumption</td>
</tr>
</tbody>
</table>

Note: EC represents Energy consumption and GDP represents Economic growth.

Table 14 indicates the bidirectional relationship between the variables.

Figure 1: Impulse Response of GDP and EC

Overall, the impulse responses summarized in Figures 1 for GDP to England EC to GDP as follows. The two graphs appear to be generally growing with expected positive trends. Expect in the case of the EC graph declines from a period of one to two, and then it starts to grow positively.

4.1. Post Estimation Results

The post-estimation test of this research focused on the efficiency, significance, and desirability of the model. The test includes - Heteroscedasticity test, serial correlation test, Normal distribution test, and stability of the model. The Heteroscedasticity is being the first to be analyzed.

Table 15: The Heteroscedasticity Test

<table>
<thead>
<tr>
<th>Null hypothesis: Model has heteroscedasticity</th>
<th>Prob**</th>
<th>0.54</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-stat</td>
<td>0.806809</td>
<td></td>
</tr>
<tr>
<td>Ob*Rsqr</td>
<td>2.6</td>
<td></td>
</tr>
</tbody>
</table>

The analysis above using the Breusch-Pagan-Godfrey testing type, for Heteroscedasticity indicate that the Prob. Chi-Square (3) is 64.76, which greater than 5%, indicates that we can ignore the Null hypothesis and results show that the system model does not suffer from the heteroscedasticity problem. Therefore the system is desirable for giving the estimation.

Table 16: The Serial Correlation

<table>
<thead>
<tr>
<th>Null hypothesis: Model has the serial correlation</th>
<th>Prob**</th>
<th>0.66</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-stat</td>
<td>0.545017</td>
<td></td>
</tr>
<tr>
<td>Obs*R-sqr</td>
<td>2.081800</td>
<td></td>
</tr>
</tbody>
</table>

Analysis from Serial correlation indicating that Prob. Chi-Square (3) is 55.56, which is more than 5% indicates we cannot ignore the Null hypothesis. Therefore, the system of data analysis cannot be affected by the serial correlation problem. Therefore, the data can be used for estimation.
The analysis from the Histogram Normal distribution above indicates that the Jarque-Beara is 27.42349% which is greater than 5%. The analyses represent the normal distribution of the system data.

Looking at the graph above, we can deduce that the graph of the CUSUM lies within the interval of a 5% significance level indicate the model is stable. If a trend is found within the boundaries, meaning that does not cross the boundaries indicates that the system model is stable. There is no effect of break structure effects within the data system.

The AR unit root contains the dotted particles which are deposited inside the cycle. The definition of this analysis is that the system model significant. If and only if these particles are found outside the cycle means that the analysis is not significant.

5. CONCLUSION

The article investigates the impact of energy consumption on economic growth in Tanzania. The article applies two variables which are identified as Economic growth and Energy consumption from the WB database which spans from the year of 1990
to 2019. To obtain the estimated results the study employs ADF, PP, Engle and Granger, VECM, and Granger causality test. The study finds that Economic growth and Energy consumption are integrated at the same order which is I (1). The study finds the cointegration between Economic growth and Energy consumption. The existence of cointegration meaning that there is the long-run and short-run relationship between Energy consumption and Economic growth in Tanzania. The study revealed the bidirectional causal relationship which runs from the Economic growth to Energy consumption and from Energy consumption to Economic growth. Therefore, the study justifies the feedback hypothesis relationship. The study revealed that Energy consumption has a significant contribution to the Economic growth of Tanzania and the Economic growth of Tanzania depends on Energy consumption. Therefore although Tanzania has a different long project for energy investment, it should focus on short runs projects. Because the empirical analysis shows that there are effects of energy consumption for both the short-run and long-run effects.

REFERENCES

Boma, K. J. (2013). The natural gas sector in Tanzania: suggestions for a better framework to benefit the country (Master’s thesis, fi= Lapin yliopisto [= University of Lapland]).

DOI: 10.17261/Pressacademia.2020.1292

Pao, H. T., & Tsai, C. M. (2011). Multivariate Granger causality between CO2 emissions, energy consumption, FDI (foreign direct investment) and GDP (gross domestic product): evidence from a panel of BRIC (Brazil, Russian Federation, India, and China) countries. Energy, 36(1), 685-693.

POLITICAL STABILITY AND ECONOMIC GROWTH RELATION: THE CASE OF TURKEY AND TURKIC REPUBLICS

DOI: 10.17261/Pressacademia.2020.1293
JEFA- V.7-ISS.3-2020(6)-p.263-273

Yavuz Ozek
Firat University, Vocational College of Social Sciences, Banking and Insurance Department, Elazig, Turkey.
yozek@firat.edu.tr, ORCID: 0000-0003-4517-4875

Date Received: May 20, 2020 Date Accepted: August 16, 2020

To cite this document
Permanent link to this document: http://doi.org/10.17261/Pressacademia.2020.1293
Copyright: Published by PressAcademia and limited licensed re-use rights only.

ABSTRACT

Purpose – The purpose of this study is to investigate the possible relation between political stability and economic growth in Turkey and Central Asian Turkic Republics namely, Azerbaijan, Kazakhstan, Kyrgyzstan, Uzbekistan, Tajikistan and Turkmenistan. By doing so, we will be able to conclude the effect of political stability on transition economies such as Turkic countries.

Methodology – We employ panel data analysis methods which take cross section dependency into account. In this regard, we employ cross section dependency test and unit root tests. In the second step, we use panel unit root co-integration test. At the end we employ panel VAR causality and Köse and Emirmahmutoglu Panel causality tests.

Findings - Results imply that there is a uni-directional causality running from gross domestic product per capita to political stability. In country based analysis, it is seen that the causation linkage running from political stability to economic growth occurs in only Azerbaijan. In other countries, there is no relationship between variables.

Conclusion - According to results, it is possible to conclude that political stability is not a pre-condition of economic growth in Turkic economies, except Azerbaijan. On the other hand, political stability might be a pre-condition of another macroeconomic indicator such as inflation, trade openness and etc.

Keywords: Central Asia, political stability, economic growth, panel data, causality.
JEL Codes: E00, C23, P48

1. INTRODUCTION

Expressing the interaction between politics and economy, political stability is a concept that develops around the new institutional economics approach and is intertwined with both politics and economy. This concept, which has gained increasing importance with the increase of international integration, has attracted the attention of many researchers and the relationship between political stability and economic indicators has become one of the frequently encountered issues in the literature.

Determining the relationship between political stability and macroeconomic indicators is very important for decision makers to guide their policies. In order to establish a stable political structure, there is a need for legitimate governance that is far from arbitrary practices, bound by rules and laws, and highly accountable. In addition, decision makers should not ignore that the political decisions they make and the policies they set would affect the economy. Predictability is very important for investors. The more positive expectations economic actors have about the future, they invest more. The atmosphere of confidence created by a stable political order contributes to the increase of positive expectations about future by eliminating uncertainty. While this situation makes the existing investments permanent, it also serves as an incentive for new investors. Otherwise, the uncertainty caused by an unstable structure will increase the level of risk, negatively affect the economic indicators, and will especially push foreign investors to seek safe havens. In addition, the chaos environment created by political instability will put pressure on government and cause loss of reputation both in domestic politics and in the international political arena.
The political stability is a very important concept in terms of emerging economies those begun to integrate with international markets. A politically stable structure is both an international reputation and an important reference source for foreign investors.

The aim of this study is to investigate possible relation between political stability and economic growth in Turkey and Central Asian Turkic Republics. While Turkey is an emerging market economy, Central Asian Turkic Republics have entered the process of integration with international markets by switching from the centrally planned system to the market economy. The contribution of the study to existing literature is that although there are numerous studies examining the relation for emerging and developed economies, there are insufficient studies examining transition economies such as Central Asian Turkic countries. To my knowledge, this is one of the initial study investigating Central Asian Turkic economies.

The first section of the study includes theoretical framework on political stability, literature survey and graphs of development of variables investigated. In the second section, analysis method employed and results of empirical analysis are presented. In conclusion section, evolutions are made for the results of empirical analysis.

2. THEORETICAL BACKGROUND OF POLITICAL STABILITY/INSTABILITY NOTION AND LITERATURE REVIEW

Political stability is an essential notion to be able to manage process in both private and public sector and it means lack of change and movement. In the case of absence of political stability, it is very possible beginning of uncertainty and loss of welfare. The basic component of political stability is predictability. Presence of opponents is the key of the political stability. Political stability expresses a set of rules which is established at the beginning and ensures the predictability where opponents are institutionally recognized.

Political stability is a notion appeared first in 1960s. Confusion about the explanation of this concept has continued until today. In studies examining the effect of political instability on growth, this state of uncertainty shows its effect. In researches related to political stability notion it is seen that frequent government changes, increase in anti-government demonstrations and actions and coups cause a politically unstable structure (Curvale, 2010: 1-12).

Huritz synthesizes different articles and collates conditions necessary for the existence of political stability in a system as follows:

- Persistence: The ability of the political system to continue
- Legitimacy: The existence of a legitimate political system
- Effectiveness: The ability to make effective decisions by the political system

For a politically stable structure, "persistence", that is, the absence of frequent government changes, is an important condition. Since there is an uncertainty about the descriptive use of these three conditions that Huritz envisages, it is discussed in the literature that in order to build stronger political stability, “legitimacy” and “efficiency” for “persistence” or “persistence” for “legitimacy” and “effectiveness”? (Park, 1982: 12).

Interaction between political decisions and economic indicators constitutes main subject of political economics and constitutes policymakers’ performances on solution of economic problems. In other words, the most important results of political decisions are seen on the field of economics. In this regard, political stability defined as stability in political decisions and political order is effective on economic order, development and stability (Çalışkan, 2019: 72).

In order to build politically stable environment, institutional factors are too undeniable. Also, it is a view in the economic literature that the increase in institutional quality positively affects economic performance. Institutions have an impact on the economic performance of the countries by reducing the uncertainty and affecting transaction costs, directing economic activities to productive areas, and enhancing cooperation and trust (Gökalp and Baldemir, 2006: 212).

Democratic framework and institutional stability are crucial for political stability. Lack of them in a system can ruin the best policies and growth initiatives. Increasing uncertainty about the future and increasing the level of risk may cause political instability and cause the funds of domestic and foreign capital owners to shift to new investment projects. In addition, regime and frequent government changes make rational expectations impossible.

In an unstable environment, investors will seek a more stable environment for reasons such as credit default risk, weakening the principle of private property and less trust in the judiciary, and will choose to shift their investments to foreign countries. Decreasing investments because of outflowing investments due to unstable structure induces economic problems such as decreasing labor demand and increasing unemployment. The persistence of instability will further undermine the political structure, leading to the skilled labor migration required for efficient production. Thus, less capital and labor will reduce total
production and lower labor quality will slow down economic growth by affecting productivity negatively (Comeau, 1998: 55-57).

In the economic literature, there are numerous many studies examining the effects of political stability / instability on countries' economic performance. The uncertainty created by instability in an economy confronts as an undesirable situation for policy makers and economic actors. When the related literature is reviewed, it is possible to conclude that a politically stable structure has a positive effect on macroeconomic indicators, political instability affects these indicators negatively. Negative effect will increase when instability increases.

Asghar et al. (2015) analyzes relation between institutional quality and economic growth in thirteen Asian economies. In the study authors employ panel data method to examine period between years 1990 and 2013. According to findings, there is a uni-directional causality running from institutional quality to economic growth and institutional quality affects economic growth positively.

Sekrafi and Sghaier (2018) investigate effects of energy consumption, corruption, quality of environment and political stability on economic growth in thirteen Middle Eastern and North African (MENA) countries. The study analyzes 1984 – 2012 period via static and dynamic panel data methods. According to analysis results, increasing corruption is effective on economic growth, environmental quality and energy consumption directly. Also economic growth affects environmental deterioration and political instability negatively.

Çetin (2019) investigates the effect of economic and political institutions on economic growth in twenty six countries. The data belonging to variables cover 2002 – 2016 period. The author analyzes the countries into two groups namely, developed and emerging market economies. According to analysis results obtained from generalized OLS (FGLS, hereafter), there is a positive and statistically significant relation between economic growth and indicators those are employed to build World Governance Index that is substituted to measure economic and political institutions.

Çalışkan (2019) examines the relation between political stability and financial development in the Turkish economy. In the study, Çalışkan employs Granger causality test to analyze 1970 – 2017 period. According to empirical analysis results, there is a long run relation between financial development and political stability and also causation linkage between political stability and financial development.

Karakuzu and Limon (2019) analyze the Tunisian economy in the context of effect of political stability on political and social life. The authors employed human development index, Failed / Fragile State Index, Global Peace and Terror Indices. They analyze 2010 – 2018 period. According to results obtained, unless governments answer needs of democracy, they would face with riots and revolts. Also, economic crises and inequality in income distribution trigger political instability.

Demez et al. (2019) investigate relation between economic growth and political stability in NIC countries. Authors employ bootstrap panel causality test developed by Konya (2006) in order to find possible causation linkage between variables between years 2002 and 2017. As a result, there is a uni-directional causality running from economic growth to political stability in only Indonesia and Turkey.

Kamacı (2019) investigates the relation for twenty OECD countries in between 2003 – 2017 years. Panel data analysis method results show that a 1 % percent increase in political instability decreases real GDP 1,784 % in the long run, while it increases economic growth 5,244 % in the short run.

Yılmaz (2019) analyzes the interaction between political instability and economic indicators for nine countries between years 2010 and 2017 via panel data analysis method. According to results obtained, there is no relation between economic growth and political instability. On the other hand, results imply a negative weak correlation between political instability and foreign direct investment inflow and outflow, inflation rate and exchange rate.

In Graph 1, it can be seen that development of political stability level of selected economies during years between 2002 and 2018. There is no considerable volatility in Azerbaijan, Kyrgyzstan and Tajikistan during the years and level of stability is close to each other. When other economies in the graph investigated, it is possible to say that level of political stability index decreased between years 2002 and 2005 in Uzbekistan. After this period, it has been started to increase in 2005 till 2018. Break point of political stability level of Uzbekistan is year of 2005. When we look closer, it is possible to conclude that there are some important changes in economic management. In this period, Uzbekistan was in a situation such as closed economy. In 2005, “Foreign Investments Law” which was accepted in 1998, was changed and by the change, foreign direct investment inflow into country is stimulated and foreign investors are privileged via tax and customs duty exemptions.
The trend between years 2007 and 2015 is positive in Turkmenistan and the lowest level was seen in 2006. After the death of former Turkmenistan head of state Niyazov, Berdimuhammedov was selected of new head of state in 2007. Contrariwise of Niyazov’s closed economy policy, Berdimuhammedov has given international relations and implemented policies in order to increase foreign trade capacity, especially for energy sources that the country has. It is seen that the policies pursued to develop the relations and to open out also reflected to the level of political stability.

Kazakhstan is the country with the highest level of political stability among the analyzed economies. On the other hand, the level of political stability in Kazakhstan showed a downward trend between 2009 and 2013, while the average course continued in other years. Kazakhstan suspended membership negotiations with the World Trade Organization, which has been going on for many years in 2009, and was included in the Customs Union Agreement between Russia and Belarus as of 2010. However, Kazakhstan could not achieve the desired result from this agreement. According to analysis for 2010-2015 period, made by Barak and Abutalipov (2016), the Customs Union Agreement between Kazakhstan, Russia and Belarus does not have any positive effect on foreign trade volume of Kazakhstan. The country officially became a member of World Trade Organization in 2015.

In Turkey, political stability index has an average cruise during whole period, but trend of index presents a negative trend between years 2014 and 2016. It is possible to conclude that coup attempt occurred in 15th of July 2016 was effective on the negative trend which is is accepted as a major indicator of political instability. But the Turkish economy was not influenced in a long time period and entered into a rapid recovery period. Recovery process also influenced the level of political stability. As of the end of 2016, it gained momentum and increased.
In Graph 2, change in gross domestic per capita of each countries examined are presented for 2002 – 2018 period. It is interesting that the lowest political stability value belongs to Turkey as indicated in graph 1, the highest gross domestic product per capita value belongs to Turkey too. Among Central Asian Turkic countries, Kazakhstan, which is the most developed economy, stands out with its high gross domestic product per capita. The economic development of Turkmenistan, Azerbaijan and Uzbekistan economies have followed similar pathways. Gross domestic product per capita of Kyrgyzstan and Tajikistan have increased in the same ratio.

3. EMPIRICAL FINDINGS

In this study, relation between political stability and economic growth is investigated in Azerbaijan, Kazakhstan, Kyrgyzstan, Uzbekistan, Tajikistan, Turkish and Turkmenistan economies. Annual data belonging to 2002 – 2018 period is employed. Political stability1 (PS, hereafter) and gross domestic product per capita (GDPPC, hereafter) are used as variables denoting political stability and economic growth, respectively. Data belonging to variables PS and GDPPC are obtained from World Bank database. Cross section dependency, unit root and causality tests are employed. In order to test cross section dependency test, Lagrange Multiplier test developed by Breusch and Pagan (1980) are used. Panel data model where size of cross section is $i=1,2,...,N$, time size is $t=1,2,...,T$, α_i and β_i are constant term and slope coefficients, respectively, x_{it} is descriptive variables vector and its size is $k \times 1$;

$$y_{it} = \alpha_i + \beta_i x_{it} + \epsilon_{it}$$

(1)

In the model, LM test statistic is $[H_0 : Cov(\epsilon_{it}, \epsilon_{jt}) = 0]$;

$$LM = T \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \beta^2_{ij} \chi^2_{N(N-1)/2}$$

(2)

1 World Bank definitions of political stability: “Political Stability and Absence of Violence/Terrorism measures perceptions of the likelihood of political instability and/or politically-motivated violence, including terrorism. Estimate gives the country’s score on the aggregate indicator, in units of a standard normal distribution, i.e. ranging from approximately -2.5 to 2.5” (World Bank Database, 2020)
\(\hat{\rho}_{ij}^{2} \) denotes sectional correlation obtained from individually employed ordinary least squares method. Pesaran (2004) finds a new LM test statistics in order to prevent size distortion. LM statistics which is modified as time size is \(T \to \infty \) and sectional size is \(N \to \infty \) is as follows:

\[
CD = \sqrt{\frac{2T}{N(N-1)}} \left(\sum_{i=1}^{N} \sum_{j=1}^{N} \hat{\rho}_{ij} \right) \equiv N(0,1)
\]

(3)

If there is no cross sectional dependency, first generation unit root tests are employed. If there is a cross sectional dependency, second generation unit root tests are employed. In order to test validity of cross section dependency in the panel data analysis, CD\(_{lm}\) test developed by Pesaran (2004), CD\(_{LM1}\) test developed by Breusch – Pagan (1980) and CD\(_{LM2}\) test developed by Pesaran (2007) are employed. If time size is bigger than cross sectional size (\(T>N \)), CD\(_{LM1}\) and CD\(_{LM2}\) tests are employed. If cross sectional size is bigger than time size (\(N>T \)), CD\(_{LM}\) test is employed.

The null hypothesis in cross sectional dependency tests is "there is no cross section dependency and alternative hypothesis denotes validity of cross section dependency."

Table 1: Cross Section Dependency Tests Results

<table>
<thead>
<tr>
<th>Model with Constant</th>
<th>PS</th>
<th>GDPPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>(CD_{lin})</td>
<td>28.552 (0.125)</td>
<td>33.54 (0.041)**</td>
</tr>
<tr>
<td>(CD_{lin})</td>
<td>1.165 (0.122)</td>
<td>1.935 (0.026)**</td>
</tr>
<tr>
<td>(CD)</td>
<td>-2.655 (0.00)**</td>
<td>-1.519 (0.064)*</td>
</tr>
<tr>
<td>(LM_{adj})</td>
<td>3.766 (0.00)**</td>
<td>-0.907 (0.818)</td>
</tr>
</tbody>
</table>

Notes: In the following model \(\Delta y_{i,t} = d_{t} + \delta y_{i,t-1} + \sum_{j=1}^{p} \lambda_{i,j} \Delta y_{i,t-j} + u_{i,t}, \) lag length (\(p \)) is accepted as 1. ***, ** and * denote that alternative hypothesis is accepted in 1%, 5% and 10% significance levels, respectively.

According to probability values, alternative hypothesis which claims validity of cross section dependency is accepted. Second generation unit root tests are capable to test whether variables are stationary for each country and it is valid in the case of \(T>N \). Seemingly Unrelated Regression Augmented Dickey Fuller test (SURADF, hereafter) developed by Breuer et al. (2002) is panel data analysis version of conventional generalized Dickey – Fuller unit root test for time series. In SURADF test is calculated as follows where \(N \) denotes the number of countries:

\[
\Delta y_{1t} = \alpha_{1} + \beta_{1} y_{1t-1} + \delta_{1t} + \sum_{j=1}^{p_{1}} \phi_{1,j} \Delta y_{1t-j} + \epsilon_{1t}
\]

(4)

\[
\Delta y_{2t} = \alpha_{2} + \beta_{2} y_{2t-1} + \delta_{2t} + \sum_{j=1}^{p_{2}} \phi_{2,j} \Delta y_{2t-j} + \epsilon_{2t}
\]

(5)

\[
\Delta y_{Nt} = \alpha_{N} + \beta_{N} y_{Nt-1} + \delta_{Nt} + \sum_{j=1}^{p_{N}} \phi_{N,j} \Delta y_{Nt-j} + \epsilon_{Nt}
\]

(6)

In this case, \(N \) null and alternative hypotheses are established for each country in the panel. In SURADF test, the null hypothesis claims the existence of unit root in the serie and alternative hypothesis claims that there is no unit root in the related serie. If the test statistic of SURADF is smaller than critical value, it is possible to imply that variable belonging to related country is stationary. If the test statistics of SURADF is bigger than critical value, it means that null hypothesis claiming the existence of unit root is accepted.

\(^2\) Since pair-wise correlations are not distributed with zero mean, Pesaran et al. (2008) can be examined for bias-adjusted LM test statistics for large panels.
Table 2: SURADF Unit Root Test Results

<table>
<thead>
<tr>
<th></th>
<th>Model with Constant Term</th>
<th></th>
<th>Model with Constant Term and Trend</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lags</td>
<td>SURADF t-stat</td>
<td>10%</td>
<td>Lags</td>
</tr>
<tr>
<td>PS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azerbaijan</td>
<td>1</td>
<td>-6.5419</td>
<td>-3.4765</td>
<td>3</td>
</tr>
<tr>
<td>Kazakhstan</td>
<td>1</td>
<td>-2.3140*</td>
<td>-4.3891</td>
<td>4</td>
</tr>
<tr>
<td>Kyrgyzstan</td>
<td>4</td>
<td>-3.6838*</td>
<td>-5.0770</td>
<td>3</td>
</tr>
<tr>
<td>Uzbekistan</td>
<td>4</td>
<td>-9.9730</td>
<td>-6.0475</td>
<td>4</td>
</tr>
<tr>
<td>Tajikistan</td>
<td>4</td>
<td>-2.8973*</td>
<td>-5.3489</td>
<td>2</td>
</tr>
<tr>
<td>Turkey</td>
<td>1</td>
<td>-3.4473*</td>
<td>-4.2656</td>
<td>1</td>
</tr>
<tr>
<td>Turkmenistan</td>
<td>4</td>
<td>-4.1293</td>
<td>0.3758</td>
<td>4</td>
</tr>
</tbody>
</table>

GDPPC

Azerbaijan	1	-6.4393	-4.9484	2	-4.3726*	-6.7894
Kazakhstan	1	-3.5484*	-4.0959	1	-3.7053*	7.7408
Kyrgyzstan	2	-4.7373*	-5.1622	1	-5.6562*	-8.9847
Uzbekistan	4	0.3612	-5.5938	4	-4.9348	-0.1073
Tajikistan	2	-5.0235	-4.8443	2	-4.7418*	-6.2939
Turkey	1	-3.7164*	-5.0767	1	-2.5691*	-8.5840
Turkmenistan	2	-3.5044*	-5.7954	2	-4.7120*	-5.3168

Notes: Maximum lag length is determined as four and optimal lag length are determined according to Schwarz information criterion. Critical values are obtained from 1,000 bootstrap simulation. ***, ** and * denote acceptance of alternative hypothesis in significance levels 1 %, 5 % and 10 %, respectively.

According to SURADF unit root test results presented in table 2, series of Kazakhstan, Tajikistan, Kyrgyzstan and Turkey belonging to political stability index are stationary in model with constant and series of Kyrgyzstan, Uzbekistan, Tajikistan, Turkey and Turkmenistan belonging to political stability are stationary in model with constant and trend. Test results also imply that in Kazakhstan, Kyrgyzstan and Turkey, GDPPC series are stationary in model with constant and in all countries except Uzbekistan; GDPPC series are stationary in model with constant and trend. But it is assumed that both series have long run memory features and first difference of series will be employed in empirical analyzes.

Pesaran and Yamagata (2008) developed Δ delta test in order to test homogeneity of slope coefficient. Null hypothesis of test is homogeneity of slope coefficient $H_{0} : \beta_{i} = \beta$ for each i.

Table 3: Cross Section Dependency and Homogeneity Tests Results

<table>
<thead>
<tr>
<th>Regression: $GDPPC_{it} = \alpha_{i} + \beta_{i}PS_{it} + \epsilon_{it}$</th>
<th>Test Stat</th>
<th>Prob Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross Section Dependency Test: LM</td>
<td>150.294</td>
<td>0.00***</td>
</tr>
<tr>
<td>CD_{lm}</td>
<td>19.950</td>
<td>0.00***</td>
</tr>
<tr>
<td>CD</td>
<td>11.731</td>
<td>0.00***</td>
</tr>
<tr>
<td>LM_{adj}</td>
<td>20.689</td>
<td>0.00***</td>
</tr>
<tr>
<td>Homogeneity Test:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\bar{\Delta}$</td>
<td>3.739</td>
<td>0.00***</td>
</tr>
<tr>
<td>$\bar{\Delta}_{adj}$</td>
<td>4.096</td>
<td>0.00***</td>
</tr>
</tbody>
</table>

Note: ***, ** and * denote acceptance of alternative hypothesis in significance levels 1 %, 5 % and 10 %, respectively.

For test stats, please see Pesaran and Yamagata (2008).
Results imply that co-integration methods based on heterogenous estimation and taking cross section dependency into account have to be employed.

Table 4: Results of No Structural Break Co-integration Tests Taking Cross Section Dependency

<table>
<thead>
<tr>
<th></th>
<th>Model with Constant Term</th>
<th>Model with Constant Term and Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Test Stat</td>
<td>Asymptotic Prob Value</td>
</tr>
<tr>
<td>Error Correction Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group_tau</td>
<td>-0.091</td>
<td>0.464</td>
</tr>
<tr>
<td>Group_alpha</td>
<td>-0.593</td>
<td>0.723</td>
</tr>
<tr>
<td>Panel_tau</td>
<td>-1.101</td>
<td>0.136</td>
</tr>
<tr>
<td>Panel_alfa</td>
<td>-0.307</td>
<td>0.379</td>
</tr>
</tbody>
</table>

Notes: Null hypothesis of test claims that there is no co-integration. In error correction test, lag and antecedent are accepted as one. Bootstrap probability value are obtained from 1.000 bootstrap simulation. Asymptotic prob values are obtained from standard normal distribution. ***, ** and * denote acceptance of alternative hypothesis in significance levels 1 %, 5 % and 10 %, respectively.

In error correction test, when both asymptotic and bootstrap probability values are taken into account, it is possible to conclude that there is no relationship between political stability and gross domestic product per capita in the long run. Panel vector auto-correlation models (PVAR, hereafter) are as follows;

\[
\Delta GDPPC = \delta_{t1} + \sum_{p=1}^{k} \delta_{1ip} \Delta GDPPC_{it-p} + \sum_{p=1}^{k} \delta_{12p} \Delta PS_{it-p} + \epsilon_{1it}
\]

(7)

\[
\Delta PS = \delta_{21} + \sum_{p=1}^{k} \delta_{21p} \Delta PS_{it-p} + \sum_{p=1}^{k} \delta_{22p} \Delta GDPPC_{it-p} + \epsilon_{2it}
\]

(8)

For equation seven where first panel VAR model presented, null hypothesis is \(\sum_{p=1}^{k} \delta_{12p} \Delta PS_{it-p} = 0 \) and it claims that there is no causation linkage running from political stability to gross domestic product per capita. Alternative hypothesis is \(\sum_{p=1}^{k} \delta_{12p} \Delta PS_{it-p} \neq 0 \) and claims there is a uni-directional causality running from political stability to gross domestic product per capita.

In equation eight where second panel VAR model presented, null hypothesis is \(\sum_{p=1}^{k} \delta_{22p} \Delta GDPPC_{it-p} = 0 \) and it claims that there is no causation linkage running from gross domestic product per capita to political stability. Alternative hypothesis is \(\sum_{p=1}^{k} \delta_{22p} \Delta GDPPC_{it-p} \neq 0 \) and claims there is a uni-directional causality running from gross domestic product per capita to political stability.

Table 5: Panel VAR Causality Test Results

<table>
<thead>
<tr>
<th>(\Delta (PS))</th>
<th>(\Delta (GDPPC))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta (PS))</td>
<td>-0.512 (0.474)</td>
</tr>
<tr>
<td>(\Delta (GDPPC))</td>
<td>3.157 (0.076)*</td>
</tr>
</tbody>
</table>

Note: ***, ** and * denote acceptance of alternative hypothesis in significance levels 1 %, 5 % and 10 %, respectively.

According to table 5, there is a uni-directional causality running from GDPPC to PS. But there is no Granger causality running from PS to GDPPC. This result shows that political stability is not a pre-condition of economic growth. So, even if there is an unstable political environment, economic growth can continue. Central Asian Turkic economies are typical transition economies even they are independent since 1990s and transition in democracy may still continue. That is why political
instability do not affect decisions of households and firms. On the other hand, when governments are successful in economic management, confidence of households and firms to government would increase and that would increase continuity of government. That is one of the measurements of political stability. As a result political stability would increase.

Emirmahmutoğlu and Köse (2011) employ causality test for each cross section by implementing bootstrap method to Fisher test statistics. Before causality test, stationary level (dmax) and optimal lag length (p) in panel VAR model are determined by employing unit root test. Then, both coefficients are collected. For each cross section, error correction terms are obtained for regressions below;

\[\text{GDPPC}_{i,t} = \alpha_{i,t} + \sum_{j=1}^{p_1+d_{\text{max}}} \beta_{ij}\text{GDPPC}_{i,t-j} + \sum_{j=1}^{p_2+d_{\text{max}}} \gamma_{ij}\text{PS}_{i,t-j} + \epsilon_{it} \]

\[\text{PS}_{i,t} = \alpha_{i,t} + \sum_{j=1}^{p_1+d_{\text{max}}} \beta_{ij}\text{PS}_{i,t-j} + \sum_{j=1}^{p_3+d_{\text{max}}} \gamma_{ij}\text{GDPPC}_{i,t-j} + \epsilon_{it} \]

Null hypothesis of Emirmahmutoğlu and Köse (2011) causality test is \(H_0: \beta_{11} = \beta_{12} = \ldots = \beta_{ik} = 0 \). Alternative hypothesis claims there is no Granger causality and as follows \(H_0: \beta_{11} = \beta_{12} = \ldots = \beta_{ik} \neq 0 \).

Table 6: Emirmahmutoğlu and Köse Panel Causality Test Results

<table>
<thead>
<tr>
<th>Lag</th>
<th>PS->GDPPC</th>
<th>GDPPC->PS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wald</td>
<td>Prob Value</td>
</tr>
<tr>
<td>Azerbaijani</td>
<td>3</td>
<td>27.285</td>
</tr>
<tr>
<td>Kazakhstan</td>
<td>3</td>
<td>4.764</td>
</tr>
<tr>
<td>Kyrgyzstan</td>
<td>1</td>
<td>0.538</td>
</tr>
<tr>
<td>Uzbekistan</td>
<td>2</td>
<td>1.951</td>
</tr>
<tr>
<td>Tajikistan</td>
<td>1</td>
<td>0.125</td>
</tr>
<tr>
<td>Turkey</td>
<td>3</td>
<td>4.150</td>
</tr>
<tr>
<td>Turkmenistan</td>
<td>1</td>
<td>1.058</td>
</tr>
<tr>
<td>Fisher</td>
<td>37.013</td>
<td>0.00***</td>
</tr>
</tbody>
</table>

Note: ***, ** and * denote acceptance of alternative hypothesis in significance levels 1 %, 5 % and 10 %, respectively.

According to Emirmahmutoğlu and Köse (2011) causality test results, in only Azerbaijan, there is uni-directional causality running from political stability to gross domestic product per capita in significance level 1%.

The result obtained from Emirmahmutoğlu and Köse (2011) test is important to conclude. Because the members of the CIS (Commonwealth of Independent States), who switched from the central planned system to the market economy, tried to rebuild their countries politically and economically and aimed to be accepted in the international arena. Among them, Azerbaijan has some extra features than others.

According to Dikkaya and Demirci (2013), Heydar Aliyev, who served as the head of state in 1993-2003, has a great contribution in the economic and political shaping of Azerbaijan. The basis of the balance strategy of the country’s foreign policy was shaped in this period, which also contributed to the shaping of the economy. While in the beginning of 2000s, the political stability provided by Heydar Aliyev was built on an energy-centered political line, bringing along economic stability. Ilham Aliyev, who was elected president in 2003 after the death of Heydar Aliyev, continued the policies of Heydar Aliyev during his rule and managed to achieve a stable performance in economic growth.

4. CONCLUSION

The interaction between political and economic policies is reflected on the political and economic stability levels of the countries and has an impact on their economic indicators. Especially in developing countries, foreign investors have an important role in ensuring sustainable economic stability. Political stability is needed to ensure sustainable economic stability. A politically unstable structure negatively affects economic performance, resulting in uncertainty in the economy. Persistence

Please see Emirmahmutoğlu and Köse (2011) for bootstrap test statistics.
of uncertainty causes foreign investors to be annoyed, resulting in a capital outflow from the country. Unlike these
negatives, which may be caused by political instability, political stability is essential for governments, because it reduces
risk via eliminates uncertainty, improves economic performance and makes investments permanent. Studies that examine
the effects of political stability / instability concepts, which are very difficult to measure, on the macroeconomic indicators of
countries, have recently come across widely in the literature of economics. In this study, relation between political stability
and economic growth in Turkey, Azerbaijan, Kazakhstan, Uzbekistan, Kyrgyzstan, Tajikistan and Turkmenistan is examined for
period between years 2002 and 2018. The cross section dependence, panel unit root and panel causality tests are made and
annual data belonging to related period is used. In the panel where there is a cross-section dependency, both variables
contain unit root in level. According to the panel vector auto-regression model, there is a Granger causality at a 10% significance
level from gross domestic product per capita to political stability. However, there is no causality running from
political stability to gross domestic product per capita. According to Emirmahmutoğlu and Kose (2011) causality test results,
there is a causation linkage running from political stability to gross domestic product per capita only in Azerbaijan.
Determining the relationship between political stability and economic indicators will be a decisive factor in policy makers'
political and economic decisions. In this study, the relationship between political stability and economic growth is examined.
Political stability is likely to have an impact on other macroeconomic indicators, such as trade openness, exchange rate,
inflation and unemployment rates. Examining the relationship between political stability and other macroeconomic indicators
for different countries or country groups in future studies will contribute to the literature.

REFERENCES

PROACTIVE RISK MANAGEMENT APPROACH IN REDUCING THE AGRICULTURAL SUPPLY CHAIN RISKS

DOI: 10.17261/Pressacademia.2020.1294
JEFA- V.7-ISS.3-2020(7)-p.274-286

Pinar Demir 1, Nilgun Kayali 2
1Manisa Celal Bayar University, Social Sciences Institute, Ph.D Program, Accounting and Finance Management, Manisa, Turkey.
2Manisa Celal Bayar University, Faculty of Economics and Administrative Sciences, Department of Business Administration, Manisa, Turkey.
demir.pin@gmail.com, ORCID: 0000-0002-1549-3536
nilgun.kayali2002@yahoo.com, ORCID: 0000-0001-6533-5847

Date Received: May 5, 2020 Date Accepted: September 8, 2020

To cite this document

Permanent link to this document: http://doi.org/10.17261/Pressacademia.2020.1294
Copyright: Published by PressAcademia and limited licensed re-use rights only.

ABSTRACT
Purpose- The purpose of this study is to provide a model that analyzes the risk factors encountered by the agriculture industry, which is an essential part of the global economy, during supply chain activities.
Methodology – In this study, a systematic risk management model (Australia and New Zealand Standard AS / NZS 4360: 2004) is proposed to manage the risks that may arise in the agricultural supply chain. The proposed model was applied in a multinational company operating in the agricultural sector and road map has been developed which allows them to monitor and manage the supply chain risks of the company systematically. Within this scope; the risks in an organization, which may lead to business interruption and losses for agriculture companies, risk matrix method has been used in order to examine their probability and effects of their consequences.
Findings- Within the scope of the study, identified risks were analyzed under six categories; namely environmental risk, supply risk, operational risk, political risk, organizational risk and financial risk. Based on the findings of the study, it is determined that eight risks most important, seven risks moderately important and six risks less important than other risks.
Conclusion- At the end of the analysis, it was concluded that, product quality, storage conditions, supply, climatic instability and commercial restrictions that limit or cause inhibition of competition in the foreign markets had critical importance in agricultural supply chain management.

Keywords: Australia/New Zealand Standards, risk management, agricultural supply chain, agricultural supply chain risk management, risk matrix.
JEL Codes: Q10, M10, M20

TARIM TEDARİK ZİNCİRİ RİSKLERİİNİN AZALTILMASINDA PROAKTİF RİSK YÖNETİMİ YAKLAŞIMI

ÖZET
Amaç- Çalışmanın amacı; dünya ekonomisinin temel bir parçası olan tarım sektörünün, tarım zınciri faaliyetleri sırasında karşı karşıya kaldığı risk faktörlerini analiz eden bir model sunmaktır.
Bulgular- Çalışma kapsamında, tespit edilen riskler: çevresel risk, operasyonel risk, politik risk, örgütSEL risk ve finansal risk olmak üzere 6 kategori altında incelenmiştir. Araştırmanın bulgularına dayanarak,sekiz risk en önemi, yedi risk orta derece önemi ve alti risk ise diğer risklere göre önemi daha az bulunmuştur.
Sonuç- Yapılan analizin sonucunda ürün kalitesi, depolama koşulları, tarımsal risk, iklim ile ilgili değişiklik ve dış pazarda rekabet etmeyi sınırlayan ya da engelleyen neden olan ticari kısıtlamaların tanım tarımsal zınciri yönetiminde kritik önem taşıdıği sonucuna varılmıştır.
Anahtar Kelimeler: Avustralya/Yeni Zelanda Standardları, risk yönetim, tarımsal zınciri riske karşı, risk matrisi
JEL Kodları: Q10, M10, M20

DOI: 10.17261/Pressacademia.2020.1294 274
1. GİRİŞ

Tanımsal riskler, coğrafi unsur olarak doyal afetlerden, iklim ve hava koşullarından kaynaklanan olaylardan, lojistik hizmet sağlayıcılardan kalite problemlerine kadar birçok sayıda ve çeşitli riskler genel olarak, tarımsal tedarik zincirini etkileyen risklerin gerçekliğini, analiz etmek ve bu risklerin etkilerini, en aza indirgemek için “risk analizi” ve “risk yönetimi” konularını kapsayan tarımsal risk yönetiminin, bu dönemde önemini kazanmıştır. Bu bağlamda, tarımsal risk yönetimi, tarımsal risklerin genel olarak doyal afetlerden, iklim ve hava koşullarından kaynaklanan olaylardan, lojistik hizmet sağlayıcılardan kalite problemlerine kadar birçok sayıda ve çeşitli riskler genel olarak, tarımsal tedarik zincirini etkileyen risklerin gerçekliğini, analiz etmek ve bu risklerin etkilerini, en aza indirgemek için “risk analizi” ve “risk yönetimi” konularını kapsayan tarımsal risk yönetiminin, bu dönemde önemini kazanmıştır.

Tanımsal tedarik zincirinin temel iş süreçleri Şekil 1 üzerinde gösterilmiştir. En sade biçimde, girdi kaynağı tedarığı (çoğaltım materyalleri, gübre, enerji), üretim, hasat sonrası işleme, depolama, pazarlama ve dağıtım yoluya ürünün nihai müşteriyeye ulaşması için tüm işlevler birbirine sistematik olarak bağlanmıştır.

Şekil 1: Tanımsal Tedarik Zinciri Süreçleri

![Diagram](image)

Kaynak: Lazzarini, Chaddad ve Cook, 2001:8

Tanımsal tedarik zincirinde, ürünler, üretim, işleme, dağıtım ve perakende yoluyla üreticiden tüketiciye doğru akış sağlar; böylece, ürünler, tarladan tüketiciye doğru domino taş gibi birbirini arasında hareket eder. Ayni zamanda, tüketicilerin satın aldığı ürünlerle karşılık ödendiği müşteriye doğru ters süreçte de domino etkisine sahiptir.

2.1. Kuramsal Çerçevede Tanımsal Tedarik Zinciri Yönetimi

1990’lı yıllarda gelişmede akademik çevrede “tedarik zinciri yönetim” kavramı geleneksel yaklaşım olan “malzeme ve bilgi akışını yönetmek” tanımından farklı olarak kuramsal bir bakış açısıyla değerlendirilmiştir. Özellikle 1990’lı yıllardan sonra tedarik zinciri yönetimi kavramı gerek iş dünyasında gerekse akademik alanda üzerinde önemle durulan bir konu haline gelmiştir (Christopher, 1998:5).

Kuramsal çerçevede, tanımsal tedarik zinciri yönetimi, etkileşim halinde birlikte çalışan bir dizi баğımlı şirketin, zincir boynu katma değer yaratarak her aşamada ürünlerin ve bilgilerin değiştirilmesi üzerine kurulu bir sistem yönetimini ifade etmektedir (Handayati, Simatupang ve Perdana:2015:2)

Chopra ve Meindl (2009:3) çalışmasında, tanımsal tedarik zinciri yönetimi; “hem üreticiden son tüketiciye hem de son tüketiciden üreticiye doğru, başka bir deyişle, ileri ve geriye doğru akses planlanması, uygulanması ve kontrol edilme süreçlerini yönetmesi” şeklinde tanımlanmıştır.

Tanım tedarik zincirinde, gıda güvenliğinin sağlanması, yüksek kaliteli ürünler ve hizmetler tüm tedarik zincirinin sorumluğundadır. Tedarik zincirinin etkinliği, temel edilen ürünün tüketici tarafından kabul edilmesi, gıda güvenliği için de önemlidir (Trienekens, Vorst, Verdouw,214:500)

Gıda Güvenliği ve Hijyen: Tarım sektöründe, gıda güvenliğinin ve hijyenik şartların sağlanması birinci ve çok geniş bir hedefdir. Ürünlerin depolanması, işlenebilme, ambalajlanması ve taşınması için gerekli faaliyetler sırasında ürünlerin tüketiciye ve çevreye biyolojik, fiziksel ve kimyasal açıdan zarar vermemesi için gerekli önlemlerin alınmasıdır.

Kalite: Etkin bir tarımsal tedarik zinciri sisteminin önemli bir unsuru olan “kalite” tarımsal gıda ürünlerinin dayanıklılık olmaması nedeniyle ürünün değerini ve özellikleri korumak için etkili bir lojistik faaliyet süreci ile ilişkilidir.

3. TARIM TEDARİK ZİNCİRİNDE RİSK YÖNETİM MODELI VE SÜREÇLERİ
Son yıllarda, tarım sektöründe risk yönetimi, geniş ve hızla gelişen bir alan olmuştur. Bu bölümde, çalışma kapsamına önderilen Avustralya ve Yeni Zelanda risk yönetim modeline ilişkin literatüre dayalı bilgiler açıklanmıştır.

3.1. Risk Kavramı

Bir eylem veya kararın neticelerinde birden fazla olasılık olacağını belirgin riskin en belirgin özelliği; ölçülebilir ve yönetilebilir bir olgu olmasıdır. Risk matematiksel terimlerle de ifade edilir ve başlıca iki faktöre dayanır; (1) riskli olayın meydana gelme ihtimali ile (2) olayın meydana geldiğindeki etkindeki şiddetin bileşkesinden oluşmaktadır (Cormican,2014:404).

Risk; bir faaliyet sürecinde veya sonucunda olumsuz bir olayın meydana gelme olasılığı ile bu olayın sonuçlarının ortaya çıkardığı zararın etkinin çarpımı ile formüle edilir (Kristina ve Wijaya, 2017).

Risk Yönetimi ve Süreçleri

Risk yönetimi süreci ise bir organizasyonun manşet ve hedeflerinin gerçekleştirilmesi üzerinde etkisi olarak risklerin tanımlanması, analizi, değerlendirmesi ve olumsuz etkilerini önlemek veya azaltmak için kontrol faaliyetlerinin tümüne içerir. Risk yönetimi sürecinde, riskler, organizasyonun içinde ve dışından kaynaklanan faktörlere göre iki kısmda değerlendirilir. Bu riskler;

- İç riskler,
- Dış riskler

İç riskler; organizasyon içinde meydana gelen olaylardan kaynaklanan, yönetilebilir risklerdir. Dış riskler ise organizasyonun dışında gerçekeleşen olaylardan kaynaklanan, iç riskler kadar yönetilebilir olmayan beklenmedik ve tahmin edilemeyen olayların neticesinde ortaya çıkan risklerdir.

Şekil 2: AS / NZS4360:2004 Risk Yönetimi Sürecinin Akış Diyagramı

Kapsam Belirlenmesi: Öncelikle, risk yönetim sürecinin ilk adımı olan kapsamın belirlenmesi, organizasyonun hedefleri, stratejileri ve faaliyet alanı ile uyumluluğunu ifade eder. Bu kapsam, yasal ve düzenleyici çevre, politik hususlar, ekonomik koşullar gibi dış faktörleri ayrıca organizasyon yapısını, iş süreçlerini ve teknoloji gibi iç faktörleri de içermelidir.

Risk Tanımlama: Risk tanımlama süreci, organizasyon hedeflerinin başarılması üzerinde etkili olabilecek risklerin ve olayların kapsamlı bir listesinin oluşturulduğu bir süreçtir. Bu aşamada yapılan teşhis, organizasyonun kontrolü altında olan ve olmayan tüm riskleri içermelidir.

Risk Analizi: Risk analizi, bir firmanın maruz kalabileceği risklerin olasılığını ve sonuçlarını tahmin eden ve bu sonuçlara göre, nihai muamele için önem veren bir süreç ifade etmektedir (Dumbrava ve Iacob, 2013:85).

Risk iki temel özellik ile karakterize edilir:
- Olasılık (her sonucun ortaya çıkma ihtimali)
- Etki (olasi olumsuz sonuçların şiddeti)

Risk analizinde kullanılan yöntemlerden biri olan risk matrisi, iki risk değeri: risk ve etmenin olayın ortaya çıkma ihtimali (olasılık) ve etmenin olayın ciddiyeti (etki) kullanarak geliştirilir. Şekil 3 üzerinde gösterilen risk matrisinde, olsalık dikey olarak yer alırken, etki (potansiyel sonuçlar) yatay düzlemde gösterilmiştir. Risk matrisindeki her hücre, riski olasılık düzeyine göre numaralandırılmıştır.

DOI: 10.17261/Pressacademia.2020.1294

Şekil 4: Risk Haritası

Kaynak: Waters, 2007:138

- Risk kabul edilebilir bir seviyenin üstünde mi?
- Riskleri ortadan kaldırmak veya etkisini azaltmak için ne yapılabilir?
- Avantajlar, riskler ve kaynaklar arasında uygun denge nedir?
- Tanımlanan risklerin kontrol edilmesi sonucunda ortaya çıkan yeni riskler var mı?

Riski Azaltma / Önleme- Bu aşamada, bir risk kabul edilebilir seviyeyi aştığıda, riskin azaltılması veya önlenmesi süreçlerine odaklanılır. Risk azaltma/önleme süreci, zararın şiddetini ve olasılığını azaltmak için alınan önlemler planlarını içerir. Risk azaltma
önermelerinin uygulanması, sistemde yeni riskler meydana getirilebileceği gibi mevcut diğer risklerin önemini de arttırmabilir.

Dolayısıyla, risk azaltma sürecini uyguladıktan sonra olası bir değişikliği belirlemek ve değerlendirmek için risk değerlendirmesi tekrar-------------</p>
TED_ R3: Satılmayan ürünlerin kalite değerlerinin düşmesi ve paketlerin fiziki görünümünde deforme olmaları durumunda satışa çıkamaması riski; tedarik Zincirinin hafif bir şekilde ifade edilebilmesi ve ciddi kararları üzerinde etkileri olumsuz etkilemektedir. Bu başlık altında 3 risk incelenmiştir.

TED_ R4: Dış kaynak kullanımında teknik risk; ürünlerin kalitesi, spesifikasyonları ve işletmeliğinin istenen standartı karşılamaması. Performans riski; tedarik Zincirinin genel olarak satın alma döngüsünü yürütme ve teslim etme performansının düşüklüğü. Sözleşme riski; sözleşmede tanımlanan performans göstermelerinin tedarik Zincirinin gerçekleştirilmiş olup hedefler yeterince kap蟾ması.

Operasyon riskleri; mal ve hizmet üretimi ile ilgili süreçlerde, dahil kontrol mekanizmalarının eksikliği, personel/çalışan hataları ve iç sistemlerin zayıflığı ile ilişkilidir. Bu başlık altında 3 risk incelenmiştir.

OPR_ R1: Ürün kalitesinde uygunsuzluk meydana gelmesi. Önceki proses sürecinden kalan, teknik zorluklar nedeniyle yeterli temizlenebilmesi kaynaklanan kimyasal ilaç kalıntılarının ürüne bulaşması.

OPR_ R2: Elektrik ve diğer enerji kaynaklarının kesintiye uğraması nedeniyle hasat edilen mısır bitkisinin kurutma işleminin gecikmesi.

OPR_ R3: Depolama ortamında isınma ve nem kaynaklı olması nedeniyle tahıl zararlılarının popülasyonunu arttırmaya neden olabilir. Bu başlık altında 3 risk incelenmiştir.

OPR_ R4: Hareketli parça doluluğundaki güvenlik riskleri; mal ve hizmet producing süreçlerinde, dahili kontrol mekanizmalarının eksikliği, personel/çalışan hataları ve iç sistemlerin zayıflığı ile ilişkilidir. Bu başlık altında 3 risk incelenmiştir.

POL_R1: Ambargo- İhracta önemli bir pazar payına sahip ülkeler ile ticaret engeli olması.

POL_R2: Hükümet tarafından ithalatı kısıtlayan, beklenmeyen düzenlemeler ve politikalar gerçekten uygulanması.

ÖRG_R1: Tedarik Zincirinde kaza, hastalık, emeklilik, kariyer fırsatı gibi nedenlerle kilit personel kaybı yaşananması.

ÖRG_R2: Yoğun sezonda nitelikli teknik uzman personel eksikliği meydana gelmesi.

ÖRG_R3: Örgüt kültüründe evrensel polikali ve organizasyon yapısında uyumsuzluk meydana gelmesi.

Finansal riskler; şirketin finansal pozisyonundaki değişiklikler ile tercihlerinin sonucunda başarısızlıklar ve mevcut yasal düzenlemelere uyum sağlamaması durumunda ortaya çıkabilecek tehlikelerle karşı geliştirilmiştir. Bu başlık altında 3 risk incelenmiştir.

FIN_R1: Finansal Raporlama Standartlarında önemli değişiklikler sonucu, FVÖK (faiz ve vergi öncesi kâr) ve diğer kilit rakamlar üzerinde ciddi etkilerin meydana gelmesi.

FIN_R2: Teminatlı borçları olan kilit müşterilerin temerrüde düşmesi nedeniyle neticesinde ödemesi gereken borcunu ödeyememesi.

FIN_R3: Doğrudan veya üçüncü kişiler vasıtasıyla herhangi bir kamu görevlisine, tedarikçeye veya müşteriye rüşvet ya da değerli bir hediye vb. yasadışı işlemler ile ödeme yapılımı neticesinde cezalar ve itibar kaybı yaşanması.

4.3. Metodoloji

Tablo 1'de yer alan olasılık göstergeleri; tedarik Zincirinin işletmeliğini ve faaliyetleri önemli ölçüde etkileyebilir. Ancak riskin bir zaman dilimi içerisinde gerçekleşebilme durumunu ifade etmek için 6 kategoride oluşturulmuştur. İlk derecesi tanımlamalarında, "A" gerçekleşme olması çok yüksek riskleri, "B" üç yılda bir meydana gelen, gerçekleşme olması yüksek riskleri, "C" dört, beş yılda bir meydana gelen, gerçekleşme olması orta seviyede olan riskleri, "D" altı ile dokuz yıl arasında meydana gelen, gerçekleşme olması düşük riskleri, "E" sekstride on yılda bir meydana gelen, gerçekleşme olması çok düşük riskleri, "F" ise ihtiyal verilememeyen riskleri ifade etmek için kullanılmıştır. Riskler gerçekleşme olasılığına ilişkin olarak firmanın tedarik zinciri faaliyetlerinin nitelikine, risk türlerine ve organizasyonun hedeflerine bağlı olarak belirlenmiştir. Bu aşamada, kayıtlara dayalı tahminler, akış analizi, sistemin analizi ve senaryo gibi teknikler kullanılarak geliştirilmiştir.
Tablo 1: Olasılık Göstergeleri

<table>
<thead>
<tr>
<th>Sıklık Derecesi</th>
<th>Tanım</th>
<th>Gösterge Sıklığı</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Çok Yüksek</td>
<td>≤ 1-2 yıl</td>
<td>Tesis veya organizasyon genelinde her yıl ile iki yılda bir meydana gelen olay</td>
</tr>
<tr>
<td>B</td>
<td>Yüksek</td>
<td>3 yıl</td>
<td>Organizasyon genelinde her üç yılda bir meydana gelen bir olay</td>
</tr>
<tr>
<td>C</td>
<td>Orta</td>
<td>4-5 yıl</td>
<td>Muhtemelen organizasyon genelinde dört ile beş yılda bir meydana gelen bir olay</td>
</tr>
<tr>
<td>D</td>
<td>Düşük</td>
<td>6-9 yıl</td>
<td>Organizasyonda altı ile dokuz yıl arasında meydana gelen olay</td>
</tr>
<tr>
<td>E</td>
<td>Çok Düşük</td>
<td>10 yıl</td>
<td>Sektörde siklikla karşılaşan bir olay</td>
</tr>
<tr>
<td>F</td>
<td>Öngörülemeyen</td>
<td>>10-100 yıl</td>
<td>Beklenmedik bir olayın gerçekleşmesi</td>
</tr>
</tbody>
</table>

Tablo 2: Etki Değerlendirme Ölçeği

<table>
<thead>
<tr>
<th>Hafif</th>
<th>Ciddi</th>
<th>Tehlikeli</th>
<th>Katastrofik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finansal</td>
<td>≤ $ 1 milyon</td>
<td>> $ 1 milyon</td>
<td>> $ 3 milyon</td>
</tr>
<tr>
<td>Sağlık ve Güvenlik</td>
<td>*İlk yardım tipi yaralanmalar</td>
<td>*Birkaç kişiyi etkileyen kısa süreli iş gündü kayipli kazalar</td>
<td>*Ciddi yaralanma, sürekli iş görmeyez, *Gerçek的机会 mümkin olan maddi hasarları</td>
</tr>
<tr>
<td>Maddi Duran Varlıklar</td>
<td>*1-2 aylık kesinti</td>
<td>*Yaklaşık 3 aylık kesinti ile(loss) tahribat</td>
<td>*Yaklaşık 6 aylık kesinti ile büyük zarar</td>
</tr>
<tr>
<td>Tedarik</td>
<td>*Satış kaybı ile neticelenmemeyen aksama</td>
<td>*Zincirde satış kaybı ile neticelenmemeyen aksama</td>
<td>*Kesin satış kaybı ile neticelenmemeyen aksama</td>
</tr>
<tr>
<td>Ürün Güvenliği ve Çevre</td>
<td>*Çevreye salınım etkisi İşletme sınırları içinde</td>
<td>*Çevreye salınım etkisi işletme sınırları içinde</td>
<td>*Çevreye belirgin ançak kısa dönemli etki, potansiyel hukuksi yapıcı bir olay</td>
</tr>
<tr>
<td>İtibar</td>
<td>*Yerel olarak bildirilen daha fazla ilgi çekmesi mümkün olan run olay</td>
<td>*Yerel toplulukta rapor edilen ançak daha geniş bir kamuoyunun parçası olarak kuruluş karşı kullanılamayan bir olay</td>
<td>*Ulusal medyada yer alan ve iş dünyasının değer etkilemesi muhtemel bir olay</td>
</tr>
</tbody>
</table>
4.4. Araştırmanın Bulguları, Analizi ve Değerlendirmesi

Şirketin tarımsal tedarik zincirinin kesintisiz bir biçimde işlenebilmesi için risklerin değerlendirilmesi ve onların etkilerini belirlemesi gerekmektedir. Risk matrisi oluşturmak amacıyla risk matrisi (L tipi – 6x4) kullanılmıştır. Şekil 5 üzerinde gösterilen L tipi – 6x4 risk matrisinde olasılık, A – F olarak 6 değerine sahiptir. Etki ise hafif, ciddi, tehlikeli ve katastrofik olarak 4 kısımda değerlendirilmiştir. Analizde olduğu risk seviyesi, bu iki boyutlu matriste, olasılık derecesi ve etki düzeyi değerlerinin çarpımından f = (Olasılık x Etki) edilmiştir.

Şekil 5 üzerinde gösterilen, risk matrisine yerleştirilen riskler, önem derecelerine göre; “en önemli”, “orta derece önemli” ve “önmeyi en az olan” riskler olmak üzere üç kategoride sınıflandırılmıştır. Burada, “en önemli” olarak nitelendirilen, kırmızı alanda yer alan riskler (OPR_R2, TED_R1, TED_R3, ÇEV_R1, OPR_R1, ÇEV_R2, OPR_R3 ve POL_R1). Bu risklerin en belirgin özelliği; gerçekleşme olasılığının ve etki düzeyinin yüksek olmasıdır. Diğer kategoride olan “orta derece olan riskler” ise sarı alanda yer almaktadır (ÖRG_R1, POL_R1, POL_R3, ÖRG_R2, FİN_R1, ÇEV_R3, FIN_R3). Bu kategoride yer alan risklerin, kabul edilebilir olması için iyi bir kontrolü ve değerendirilmesi gerekir. Bu risklerin, ortaya çıkma olasılığını azaltma ve etkisinin düşürülmesi için ilave tedbirler alınmalıdır. Ancak, bu risklerde de risklerin gerçekleşme ihtimalinin de yüksek olması gerekmektedir.

Şekil 5: Analiz Edilen Risklerin Risk Matrisindeki Konumu

En önemli riskler incelendiğinde; tarımsal tedarik zincirinin işleyişini ve hedefleri olumsuz yönde etkilemektedir. Bu risklerin gerçekleşme ihtimali, risklerin etkisi ve gerçekleşme olasılığı, risk derecesi ve etki düzeyi, risk analizinde kullanılan matematiksel modelin temelini oluşturur. Risklerin, etkilerin ve gerçekleşme olasılığın yüksek olduğu riskler; tarım sektöründe iklim değişiklikleri, doğal ve sosyo ekonomik etkenler ve politikaların etkisi, tarımsal tedarik zincirindeki risklerin, ürün ve materyallerin kalitesi, pazarlama ve pazarlama stratejilerinin etkisi, teknolojik gelişmeler ve teknolojiyi integral olarak çekmektedir.

Bu risklerin gerçekleşme ihtimalinin yüksek olduğu riskler, risk matrisinde kırmızı renksinde bulunmakta ve bu risklerden etkilenen riskler; Cenahi riskler, araçtirim ve geliştirme, operasyonel riskler, teknolojik riskler ve finansal riskler. Bu riskler, etkilerin ve olasılığın yüksek olması nedeniyle, risk matrisinde kırmızı renksinde bulunmaktadır.

5. SONUÇ

Tarımsal işletmeler, faaliyetlerini riske çok açık bir ortamda sürdürmektedir. Bu nedenle, tedarik zinciri yöneticilerinin başlıca endişelerinden biri, zincirin herhangi bir halkasında aksaklık meydana gelmesidir. Çünkü üretim veya testim süreçlerinde gerçekleşen bir krizin, satış kayıplarını, gelirlerin azalmasını, kâr kaybını ve belki de en önemlisi firmanın itibarının zedelenmesini neden olacaktır.

Uygunlamanın edele edilen analiz sonuçları inceleyerek, sezik risk en önemli, yedi risk orta derece önemli ve altı risk ise diğer risklere göre önemli daha az olarak bulunmaktadır. Öncelikle firmanın acil önlem alması gereken en kritik riskin ürün kalitesinde uygunsuzluk (OPR_R1) riski olduğu görülmektedir. Yapılan değerlendirmelerde, söz konusu risk ortaya çiya olması’nın, üçüncü ülde bir önüne veopleften ile firmanın ortaya çıkmalarında ve firmanın ortaya çıkmalarında firmanızın engellenmesi (POL_R1) riskidir. Bu riskin ortaya çıkmaya ani bir risk (ÇEV_R1) riski de önemli olmaktadır ve riskin ortaya çıkmaya ani bir risk (ÇEV_R1) riski de önemli olmaktadır ve riskin ortaya çıkmaya ani bir risk (ÇEV_R1) riski de önemli olmaktadır ve riskin ortaya çıkmaya ani bir risk (ÇEV_R1) riski de önemli olmaktadır ve riskin ortaya çıkmaya ani bir risk (ÇEV_R1) riski de önemli olmaktadır ve riskin ortaya çıkmaya ani bir risk (ÇEV_R1) riski de önemli olmaktadır ve riskin ortaya çıkmaya ani bir risk (ÇEV_R1) riski de önemli olmaktadır ve riskin ortaya çıkmaya ani bir risk (ÇEV_R1) riski de önemli olmaktadır ve riskin ortaya çıkmaya ani bir risk (ÇEV_R1) riski de önemli olmaktadır ve riskin ortaya çıkmaya ani bir risk (ÇEV_R1) riski de önemli olmaktadır ve riskin ortaya çıkmaya ani bir risk (ÇEV_R1) riski de önemli olmaktadır ve riskin ortaya çıkmaya ani bir risk (ÇEV_R1) riski de önemli olmaktadır ve riskin ortaya çıkmaya ani bir risk (ÇEV_R1) riski de önemli olmaktadır ve riskin ortaya çıkmaya ani bir risk (ÇEV_R1) riski de önemli olmaktadır ve riskin ortaya çıkmaya ani bir risk (ÇEV_R1) riski de önemli olmaktadır ve riskin ortaya çıkmaya ani bir risk (ÇEV_R1) riski de önemli olmaktadır ve riskin ortaya çıkmaya ani bir risk (ÇEV_R1) riski de önemli olmaktadır ve riskin ortaya çıkmaya ani bir risk (ÇEV_R1) riski de önemli olmaktadır ve riskin ortaya çıkmaya ani bir risk (ÇEV_R1) riski de önemli olmaktadır ve riskin ortaya çıkmaya ani bir risk (ÇEV_R1) riski de önemli olmaktadır ve riskin ortaya çıkmaya ani bir risk (ÇEV_R1) riski de önemli olmaktadır ve riskin ortaya çıkmaya ani bir risk (ÇEV_R1) riski de önemli olmaktadır ve riskin ortaya çıkmaya ani bir risk (ÇEV_R1) riski de önemli olmaktadır ve riskin ortaya çıkmaya ani bir risk (ÇEV_R1) riski de önemli olmaktadır ve riskin ortaya çıkmaya ani bir risk (ÇEV_R1) riski de önemli olmaktadır ve riskin ortaya çıkmaya ani bir risk (ÇEV_R1) riski de önemli olmaktadır ve riskin ortaya çıkmaya ani bir risk (ÇEV_R1) riski de önemli olmaktadır ve riskin ortaya çıkmaya ani bir risk (ÇEV_R1) riski de önemli olmaktadır ve riskin ortaya çıkmaya ani bir risk (ÇEV_R1) riski de önemli olmaktadır ve riskin ortaya çıkmaya ani bir risk (ÇEV_R1) riski de önemli olmaktadır ve riskin ortaya çıkmaya ani bir risk (ÇEV_R1) riski de önemli olmaktadır ve riskin ortaya çıkmaya ani bir risk (ÇEV_R1) riski de önemli olmaktadır ve riskin ortaya çıkmaya ani bir risk (ÇEV_R1) riski de önemli olmaktadır ve riskin ortaya çıkmaya ani bir risk (ÇEV_R1) riski de önemli olmaktadır ve riskin ortaya çıkmaya ani bir risk (ÇEV_R1) riski de önemli olmaktadır ve riskin ortaya çıkmaya ani bir risk (ÇEV_R1) riski de önemli olmaktadır ve riskin ortaya çıkmaya ani bir risk (ÇEV_R1) riski de önemli olmaktadır ve riskin ortaya çıkmaya ani bir risk (ÇEV_R1) riski de önemli olmaktadır ve riskin ortaya çıkmaya ani bir risk (ÇEV_R1) riski de önemli olmaktadır ve riskin ortaya çıkmaya ani bir risk (ÇEV_R1) riski de önemli olmaktadır ve riskin ortaya çıkmaya ani bir risk (ÇEV_R1) riski de önemli olmaktadır ve riskin ortaya çıkmaya ani bir risk (ÇEV_R1) riski de önemli olmaktadır ve riskin ortaya çıkmaya ani bir risk (ÇEV_R1) riski de önemli olmaktadır ve riskin ortaya çıkmaya ani bir risk (ÇEV_R1) riski de önemli olmaktadır ve riskin ortaya çıkmaya ani bir risk (ÇEV_R1) riski de önemli olmaktadır ve riskin ortaya çıkmaya ani bir risk (ÇEV_R1) riski de önemli olmaktadır ve riskin ortaya çıkmaya ani bir risk (ÇEV_R1) riski de önemli olmaktadır ve riskin ortaya çıkmaya ani bir risk (ÇEV_R1) riski de önemli olmaktadır ve riskin ortaya çıkmaya ani bir risk (ÇEV_R1) riski de önemli olmaktadır ve riskin ortaya çıkmaya ani bir risk (ÇEV_R1) riski de önemli olmaktadır ve riskin ortaya çıkmaya ani bir risk (ÇEV_R1) riski de önemli olmaktadır ve riskin ortaya çıkmaya ani bir risk (ÇEV_R1) riski de önemli olmaktadır ve riskin ortaya çıkmaya ani bir risk (ÇEV_R1) riski de önemli olmaktadır ve riskin ortaya çıkmaya ani bir risk (ÇEV_R1) riski de önemli olmaktadır ve riskin ortaya çıkmaya ani bir risk (ÇEV_R1) riski de önemli olmaktadır ve riskin ortaya çıkmaya ani bir risk (ÇEV_R1) riski de önemli olmaktadır ve riskin ortaya çıkmaya ani bir risk (ÇEV_R1) riski de önemli olmaktadı.

ABSTRACT

Purpose: This study is based on IHPS BPK RI 2017 in the second semester. There are problems in terms of the performance of local governments in Lampung Province. The purpose of this study is to analyze the effect of 4 successful factors of AIS consisting: service quality, information quality, data quality, and system quality on organizational performance moderated by organizational culture.

Methodology: The population of this study is 29 Regional Apparatus Organizations (RAO) in South Lampung Regency using a saturated sample. Contingency theory is the basis of this study in order to form a mindset connecting four successful factors of AIS supported by the organizational culture of the leadership of the RAO on organizational performance. The analysis technique uses Structural Equation Model (SEM) through the SMART PLS version 3.0 application.

Findings: The results of this study indicate that there is a significant positive impact on organizational performance which has been presented by service quality. On the other hand, organizational performance is not influenced by information quality, data quality, and system quality. Whereas, the organizational culture does not constrain the relationship of service quality, information quality, data quality, and system quality on organizational performance.

Conclusion: This study concluded that service quality is positive significantly on the organizational performance. Whereas, the information quality, data quality, and system quality insignificant relationship with the organizational performance in regional apparatus organizations. Therefore, further studies could be conducted to include other variables such as employee motivation, employee performance, self-efficacy, in Indonesian local government.

Keywords: Service quality, information quality, data quality, system quality, organizational performance, organizational culture.

JEL Codes: H11, M41, M48

1. INTRODUCTION

The state as a public organizer obligates to meet the basic needs of the citizens. The basic needs consist of goods, services as well as administrative services. The public services provided by public service providers show the government system whether it is good or bad. The government organizes public services which represent the quality of the public bureaucracy. Therefore, the government ought to reform the quality of public services to get people's satisfaction. In this case, the government has a policy related to public services stated by the Decree of the Minister of Empowerment of State Apparatus (KEP/25/M.PAN/2/2004). It explains the general guidelines for preparation of Public Satisfaction Index in the government institution service unit. To improve the quality of public services, the government has formulated guidelines to improve the quality of public services involving the public stated in Law Number 25 of 2009 mentioning that everyone has the right to use the best public services. In accordance with Permendagri No. 13 of 2006, performance is defined as the output / results of various activities / programs to use a measured quantity and quality budget as the target.
Problems with public sector organizations, especially in Indonesia, still occur today. The results of audits of the Supreme Audit Agency (BPK) in 2015 - 2017 have shown that the public service administration of Population Administration and the Office of Investment and Integrated Services remains very low. Sunarto (Head of the Lampung Representative Financial Auditing Agency) states that the poor performance quality of local governments is found in North Lampung, Central Lampung, South Lampung and Tulang Bawang.

One of the critical success factors of organizational performance is service quality. To achieve the success of an organization, there is one factor that is providing quality of service (Rahaman et al. 2011). According to Gowan, Seymour and Ibarreche (2001), to provide public sector services is sophisticated. It deals with meeting and finding out the needs, setting priorities, and allocating public resources. Public sector organizations are always pressured to provide service quality and improve efficiency (Robbin & Coulter, 2005). Service quality on organizational performance has a positive relationship (Ali et al. 2016; Duncan & Elliot, 2002; Nazeer et al. 2014; Yasin et al. 2004).

Emery (1971) states that the information quality becomes the cause of a decrease in operating costs outside the information processing system. Hamilton and Chervany (1981) state that improving computer-based information systems can be done through corporate revenue. Bender (1986) examines the effect investigating financial information processes. It can be found that the quality of information has a positive-significant positive impact on organizational performance. The review shows that the quality of information and the performance of ERP system users have a significant relationship (Kositanurit et al. 2006). In line with this, a close relationship is found in the information quality and performance quality occurring in the public sector organizations (Ali et al. 2016).

Peltier et al. (2013) state two main ideas. First, high-quality customer data has impacted the customer and business performance. Second, the executive suite becomes the most important control of customer data quality. The quality of inputs, processes and outputs determines the result of effectiveness. This shows the essence of data quality for the success of AIS (Hubley, 2011; Wongsim & Gao, 2010). The importance of data quality is the top priority in organizations. It also influences not only the organizational performance but also the adoption of accounting information systems (Ahmad et al. 2013; Emeka-Nwokeji, 2012). The study is not in accordance with Ali et al. (2016) which finds there is not any impact on organizational performance delivered by data quality.

The quality of the system is an information characteristic about the system. The quality of which the system refers to how well information about the user needs are provided by the hardware, software, and policy policies of the information system as stated by Delone and McLean (1992). The company is benefited with compatible high-quality software (Slaughter et al. 1998). Data warehousing situations with a system quality related to good benefits have been noticed from the productivity of individuals which ease the decision determination (Wixom & Watson, 2001). The system quality is related to the organizational performance in the company at the operational level in a positive way (Bradley et al. 2006). Seddon and Kiew (1996) describe the system quality related to the perceived benefits becomes significant. Generally, the existing relationships between the system quality and the benefits have been summarized in part by the literature. The related relationship between ease of use (even though it is perceived as a benchmark for the quality of the system) and the perceived benefits are mixed. Some studies found that the system quality performs a positive relationship with the benefits of an organization (Hsieh & Wang, 2007). In line with the public sector, the system quality influences organizational performance (Ali et al. 2016; Bharati & Chaudhury, 2015). However, there are also those which deliver no effect (Shagari at al. 2017).

This study applies organizational culture as a moderating variable. It is because the organizational culture and the organizational performance deliver effect on one another. There is a positive relationship between organizational culture which leads to results related to the performance (Verbeeten & Spekle, 2015). Performance management triggers the emergence of unique cultures in public sector organizations. It ripples significant effects developing the performance of public sector organizations (Parker & Bradley, 2000). Henri (2006) claims that organizational culture is a strongly built performance management practice. It also serves as a major determinant of the performance of public sector organizations. An effective organizational culture is a well-known and familiar construction. It plays an important role to promote good institutional practices and achieve efficient results (Ramachandran, Chong, & Ismail, 2011). In the same order, Kanji and Moursa (2007) argue that institutional culture influences functional patterns and organizational performance. Melkers and Willoughby (2005) specifically postulate that flexibility in cultural norms and good cultural tendencies enhance the performance of public sector organizations. Wong et al. (2012) suggest that organizational or institutional culture determines the success or the failure in corporate governance. Institutional culture shows the goals of an organization. It directs the organization and institutional culture and the organization performance responses (Pandey, 2014). Parker and Bradley (2000) determine an essential relationship between institutional culture and organizational performance. Even so, Ramachandran et al. (2011)
suggest that institutional culture gradually becomes a trend in public sector organizations. It is the malfunction or absence which becomes a serious concern.

The main purpose of this study is to obtain the organizational performance through success factors namely information quality, service quality, data quality, and system quality focusing on the organizational culture. Specifically, this study aims to analyze the effect of AIS successful factors on organizational performance. It also aims to analyze the influence of organizational culture and organizational performance in RAO, South Lampung Regency.

Focus on the organizational performance in Indonesia local government context, the next section is highlight literature review related to the organizational performance, contingency theory, hypothesis development of each variables in this study.

2. LITERATURE REVIEW

2.1. Contingency Theory

Contingency theory is a theory which requires a leader to make appropriate adjustments related to his own leadership in any circumstances. This theory is put forward by Fiedler (1964). It is mentioned that a leader’s performance is determined and seen from his understanding of the conditions he leads. This contingency theory focuses on the form of leadership as well as the understanding of the appropriate circumstance situations for a leader. The form of leadership can be elaborated with the enthusiasm of work as a motivational relationship. Work motivation focuses on achieving an objective, emphasizing the development and the close relationships of individuals. Then, the form of leadership can be adjusted to the happening situation and conditions. Contingency theory states that there are three factors influencing the occurrence of a situation faced by a leader. Those three are subordinate leader relations, performance structure, and position strength. The subordinate leadership relationship is linked to the group’s atmosphere and self-confidence, loyalty, and interaction. Performance structure is more related to performance optimization. Study related to organizational performance using contingency theory has been conducted by several studies namely Saha et al. (2012) and Shagari et al. (2017). Then, this study also uses contingency theory to support the relationship among several independent variables (service quality, information quality, data quality, and system quality on the dependent variable (organization performance) and the moderation relationship for the independent relationship to the dependent.

2.5. Hypothesis Development

The development of hypotheses in this study is based on the success factors of AIS. The factors are believed to influence organizational performance. It is formulated as:

Service Quality and Organizational Performance

Gardin and Greve (2008) state that the basic meaning of contingency theory is that organizations should be adaptive. They should adapt to their contingency structures, such as the environment, organizational size, and business strategy. It aims that the organization is able to run well. Duncan and Elliott (2002) suggest that there is a beneficial relation between service quality and financial performance in a financial services organization. Kesuma et al. (2013) and Naezer et al. (2014) identify a mutual relationship between service quality and business performance. They suggest the profit-seeking activities by providing services to possibly provide a greater strategic role for service quality. It is coupled with making a constant change toward better and premium prices, better customer value, and customer orientation as the benefits from the implementation of information technology. Also, others report some findings related to service quality on organizational performance with positive and significantly strong relationship using individual measurements (Weerakoon & Wijavanayake, 2013; Khan & Fasih, 2014; Ali et al. 2016). They examine the organizational performance as customer loyalty. They report a beneficial relationship is found according to service quality.

\[H_1: \text{Service quality has a positive effect on organizational performance} \]

Information Quality and Organizational Performance

In the previous information system study, Emery (1971) states that intrinsic value is not held by information but its value is only related to the effect on physical events. However, this has become a trigger (Lucas Jr. & Nielsen, 1980). In terms of performance improvement, this study applies learning as the dependent variable to make an understanding of inventory using the system. It is because an Information Quality (IQ) problem delivers significant changes for companies which project superior performance, gain competitive advantage, or survive in the survival of the environment in contemporary business.
Several previous and modern research studies have been conducted on the effects of information systems and using the size of an organization’s performance and their dependent variables (Chang & King, 2005; Bernroeder, 2008; Gorla et al. 2010). At the organizational level, previous study conducted reveals that IQ affects organizational performance (Ali et al. 2016; Soudani, 2012).

H2: Information quality has a positive effect on organizational performance.

Data Quality and Organizational Performance

Contingency theory suggests an organizational structure containing several factors including environmental conditions, business strategies, hierarchy in organizations, technology production, and forms of management (Ismail & King, 2004). The quality and effectiveness of accounting information systems depend on the quality of inputs, outputs and processes. It shows the urge of data quality for the accounting information system successes as stated by Hubley (2011) and Wongsim and Gao (2010). A study by Rahayu et al. (2012) mentions that achieving effective works, data quality is required for an accounting information system. Thus, an accounting information system adoption needs to be considered. Both system quality and data quality are used for the decision-making activities in organizations (Wongsim & Gao, 2010). In the study of Ahmad et al. (2013), it reveals the priority of data quality in any AIS. It indicates that the organizations should apply it as the main reference. Emeka-Nwokeji (2012) states that the quality of data in accounting information systems should refer to the size of the data quality in organizations and contribute to the effectiveness of accounting information systems. Saleh (2013) finds a strong relationship between data quality and auditor internal perceptions. Previous study related to data quality as a success factor in organizational performance is noticed to have a positive effect (Ahmad et al. 2013; Emeka-Nwokeji, 2012).

H3: Data quality has a positive effect on organizational performance.

System Quality and Organizational Performance

Contingency theory is to assess company performance which depends on the suitability between contextual factors as an organization (Cadez & Guilding, 2008). The system quality contributes to the usage, user convenience and individual performance. It consequently affects performance in the organization (DeLone & McLean, 1992). There is an important prerequisite to benefit from the organization. It is a well-developed and implemented system. Gorla et al., (2010) and Hsieh and Wang, (2007) report that system quality has a positive effect for the organizations. Kostanurit et al. (2006) finds a significant relationship between the perceived ease of use and performance. However, reliability and performance for individual ERP system users have not affected each other. Bharati and Chaudhury (2015) find mutual relationships among system quality, measurement using reliability, flexibility, ease of use, and the convenience of access for satisfaction in decision making. This is in line with Ali et al. (2016) who delivers findings related to the effect of system quality on organizational performance. It suggests that the system quality is strongly associated with net benefits at the organizational level.

H4: The quality of the system has a positive effect on organizational performance.

Organizational Culture as Moderator

Organizational culture is a condition in which a strong look is made to make progress-engineered mechanisms to carry out several considerations in the organization (Akinnusi, 1991). Ramachandra et al. (2010) mention that the organizational culture (OC) significantly influences the success of promoting organizational change. The leadership models desire the behaviors. In fact, the implementation of the first change should be from the lead organizations to the general workforce to strengthen their commitment of work. It purposes that there will be no negative impact on the change. The study conducted by Ali et al. (2016) confirms the findings that the culture of organizations helps increase the performance of the organizations by relating information quality, data quality and system quality; and weakening service quality.

Organizational activities and steps to obtain a decision formulation are directed from the culture of the organization. Thus, it supports the welfare of the organization. Organizational culture is considered as the creation of human resource management practices, or managerial practices affecting the company boards, shareholders, or other stakeholder preferences. The performance of the system has the effect on the relationship between organizational commitment and work performance (Babulak, 2006; Buller & McEvoy, 2012; Özçelik & Aydinli, 2012). The findings of this invention have been adjusted to several findings in the past which have an effect on the system quality, as previously reported. According to Babulak (2006) performance can be made by employees or individuals at work sites. Personal factors can also exert influence in a performance are knowledge, abilities, skills, motivation and attitudes. Shift rules to provide better performance output in the workplace are a system of performance management dealing with colleagues and superiors, performance goals, company

DOI: 10.17261/Pressacademia.2020.1295
encouragement, and action or award to recognize outstanding performance. These factors include: the application of organizational culture, and the determining factor is individual organizations in accordance with organizational goals.

- **H₅**: Organizational culture moderates the relationship between service quality and organizational performance.
- **H₆**: Organizational culture moderates the relationship between information quality and organizational performance.
- **H₇**: Organizational culture moderates the relationship between data quality and organizational performance.
- **H₈**: Organizational culture moderates the relationship between system quality and organizational performance.

3. DATA AND METHODOLOGY

This study aims to analyze the influence of the success factors of AIS (service quality, information quality, data quality, and system quality) and the influence of organizational culture in the organizational performance. The population in this study is 29 RAO in South Lampung Regency. The samples of this study taken from three divisions. The sample taken from the Regional Secretariat is the Regional Secretary, Section Assistant and Section Chief. The sample taken from the DPRD Secretariat is the DPRD Secretary and the Head of the Department. The sample taken from the Office and Agency is the Head of Service or Head of Agency and the Office Secretary or Agency Secretary. In this study, the sampling method applies saturated samples with a quantitative approach. A total of 77 questionnaires were distributed, as many as 67 questionnaires were used with complete conditions, and 10 questionnaires were not returned.

The collected data was then analyzed using Structural Equation Modeling (SEM) and computer software supported by the application of Partial Least Square (PLS) version 3.0. The dependent variable is the organizational performance measured by the indicators adopted from Ali et al. (2016).

The independent variable in this study is the quality of service measured by indicators adopted from Kheng (2010), information quality measured by indicators adopted from Ali et al. (2016), data quality measured by indicators adopted from Ali et al. (2016), and the quality of the system as measured by indicators adopted from the Shagar et al. (2017). The moderating variable is the organizational culture measured by indicators adopted from Aswar and Saidin (2018). A Likert scale with 5 levels (1 = Strongly Disagree, 2 = Disagree, 3 = Neutral, 4 = Agree, 5 = Strongly Agree) was applied in this study.

4. FINDINGS AND DISCUSSIONS

Before testing the hypothesis, validity and reliability tests are done first. The validity testing is done by observing the average variance extracted (AVE) with recommended value above 0.5. The reliability test is done by observing the value of Composite Reliability and Cronbach Alpha. The Composite Reliability value for all constructions is above 0.7. It means that all constructs in this study are estimated to meet the criteria and the suggested values in Cronbach’s Alpha above 0.6 is for all constructions (Ghozali, 2014). Furthermore, to assess the model with PLS is by checking the R-Square (R²) for each latent dependent variable (Ghozali, 2014). The results of validity and reliability tests can be seen in the following table.

Table 1: The Results of Validity and Reliability Test

<table>
<thead>
<tr>
<th>Variable</th>
<th>AVE</th>
<th>Composite Reliability</th>
<th>Cronbach’s Alpha</th>
</tr>
</thead>
<tbody>
<tr>
<td>OC</td>
<td>0.517</td>
<td>0.863</td>
<td>0.816</td>
</tr>
<tr>
<td>DQ</td>
<td>0.577</td>
<td>0.890</td>
<td>0.854</td>
</tr>
<tr>
<td>IQ</td>
<td>0.733</td>
<td>0.943</td>
<td>0.927</td>
</tr>
<tr>
<td>OP</td>
<td>0.600</td>
<td>0.881</td>
<td>0.830</td>
</tr>
<tr>
<td>SQ</td>
<td>0.510</td>
<td>0.892</td>
<td>0.865</td>
</tr>
<tr>
<td>QS</td>
<td>0.545</td>
<td>0.892</td>
<td>0.856</td>
</tr>
</tbody>
</table>

The lowest value of AVE is 0.510 in the independent variable that is service quality and all variables are valid. The lowest value of Composite Reliability in this research model is 0.863 for organizational culture variables so that all variables have good reliability from each construct. The lowest value of Cronbach’s Alpha is 0.816 in organizational culture so that all variables show good reliability of each construct as well.

R-Square (R²) seen from Adjusted R-Square organizational performance is equal to 0.336. It indicates the independent latent variables of service, information, data, and system qualities. The moderation variables namely organizational culture explains the dependent latent variables namely organizational performance by 33.6%. The remaining 66.4% is explained by other factors out of this study which has not been considered.

DOI: 10.17261/Pressacademia.2020.1295
Table 2: The Results of Hypotheses Test - Bootstrapping Algorithm

<table>
<thead>
<tr>
<th>Hypotheses</th>
<th>Variables</th>
<th>Path Coefficients</th>
<th>T Statistics</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>SQ -> OP</td>
<td>0.365</td>
<td>2.564</td>
<td>0.011</td>
</tr>
<tr>
<td>H2</td>
<td>IQ -> OP</td>
<td>0.073</td>
<td>0.428</td>
<td>0.669</td>
</tr>
<tr>
<td>H3</td>
<td>DQ -> OP</td>
<td>0.155</td>
<td>0.907</td>
<td>0.365</td>
</tr>
<tr>
<td>H4</td>
<td>QS -> OP</td>
<td>0.071</td>
<td>0.386</td>
<td>0.699</td>
</tr>
<tr>
<td>H5</td>
<td>OC.SQ -> OP</td>
<td>-0.121</td>
<td>0.641</td>
<td>0.522</td>
</tr>
<tr>
<td>H6</td>
<td>OC.IQ -> OP</td>
<td>-0.111</td>
<td>0.458</td>
<td>0.647</td>
</tr>
<tr>
<td>H7</td>
<td>OC.DQ -> OP</td>
<td>0.155</td>
<td>0.745</td>
<td>0.457</td>
</tr>
<tr>
<td>H8</td>
<td>OC.QS -> OP</td>
<td>0.342</td>
<td>1.549</td>
<td>0.122</td>
</tr>
</tbody>
</table>

The results of testing the hypothesis are by applying Structural Equation Modeling (SEM) and by using computer software supported by the Partial Least Square (PLS) version 3.0 application. Table 2 shows that service quality (SQ, t = 2.564 and p-value = 0.011), information quality (IQ, t = 0.428 and p-value = 0.669), data quality (DQ, t = 0.907 and p-value = 0.365), the quality of the system (QS, t = 0.386 and p-value = 0.699), it means that H1 is accepted and H2, H3, and H4 are rejected. Organizational culture in moderating service quality (OC.SQ, t = 0.641 and p-value = 0.522) does not affect organizational performance which means that H5 is rejected. Organizational culture in moderating information quality (OC.IQ, t = 0.458 and p-value = 0.647) does not affect organizational performance which means that H6 is rejected. Organizational culture in moderating data quality (OC.DQ, t = 0.745 and p-value = 0.457) does not affect organizational performance which means that H7 is rejected. Organizational culture in moderating the quality of the system (OC.QS, t = 1.549 and p-value = 0.122) does not affect organizational performance which means that H8 is rejected.

Service quality has a positive influence on organizational performance. It shows that better service quality increases the organizational performance supported by Weerakoon and Wijavanayake (2013), Khan and Fasih (2014), and Ali et al. (2016). The results of the study indicate the good quality of services including reliability, assurance, direct evidence, friendly attitude of officers, empathy, and responsiveness related to the state of existing human resources, infrastructure and work facilities producing good organizational performance. Then, it is in accordance with the contingency theory focusing on the form of leadership and understanding of the situation with the appropriate circumstances by a leader. The form of leadership is explained as a work impulse or as a relationship boost. Work motivation focuses more on achieving goals, improvement and personal relationships.

The quality of information has no effect on organizational performance. It shows that the quality of information has not been maximized yet. Thus, organizational performance declines. The results of this study are not supported by studies which reveal information quality influencing organizational performance such as Bharati and Chaudhury (2015), Ali et al. (2016), Soudani (2012). Then, there is the lack of implementing good information quality including accuracy, timeliness, and format to facilitate human resources at work and produce unfavorable outputs. It is not in accordance with the contingency theory which serves as the basis for developing hypotheses. The results of the study refer to the internal dependence to meet the need of sharing information across national organizational functions, organizational formalization, and interdependence of organizations in terms of resource interests and accessibility, significant effects on requirements for organizational coordination and national system control.

Data quality presents no effects on organizational performance. This proves that data quality has not been maximized. As a result, organizational performance declines. The results of this study are supported by Ali et al. (2016) revealing that there are no relations between data quality and organizational performance. However, the results of this study are not supported by studies reporting that data quality affects organizational performance (Ahmad et al. 2013; Emeka-Nwokeji, 2012). It is caused by the lack of implementation to produce high quality data such as: accuracy, completeness, renewal, consistency, relevant human resources facilities at work and unfavorable output productions. Then, it is not in accordance with the contingency theory suggesting the existence of an organizational structure. There are several contextual factors namely environmental conditions, the existence of a business plan, organizational mechanisms, production for technology, and forms of management (Ismail & King, 2004).

The system quality performs no effect on the performance of the organization. It shows unmaximized quality of the data which decreases the organizational performance. The results of this study are supported by Shagari et al. (2017) revealing the quality of the system with no impact on organizational performance. However, it is not supported by research revealing that the quality of the system influences organizational performance such as Bharati and Chaudhury (2015) and Ali et al.
(2016). It causes the system not to integrate, and the bias data. It is concluded that there is a poor implementation of the system to support the processing of inputs and outputs such as: security, ease of use, efficiency used by human resources while working and producing unfavorable outputs. Thus, it is not in accordance with the contingency theory explaining that the accounting information system needs to adapt to the specific desires. It considers the environment and organizational structure in an organization (Dandago & Rufai, 2014). Contingency theory is to assess company performance depending on the suitability between contextual factors as an organization (Cadez & Guilding, 2008).

Organizational culture does not balance the service quality and organizational performance. It indicates that organizational leaders do not apply good organizational culture. The results of this study are in line with Ali et al. (2016) explaining that the organizational culture becomes a moderating variable to weaken the organizational performance by interacting with service quality. This is not according to Katou and Budhwar (2010) examining a causal relationship of HRM performance into Greek utilizing contingency theory, resource-based views as well as ability, motivation and opportunity. Leaders lack a good organizational culture which includes innovation and risk developments, attention to detail, output orientation, people and team orientations, aggressiveness, stability, and influencing employees to provide public information to the public.

The results of this study are not in line with Ali et al. (2016). It mentions organizational culture as a moderating variable which strengthens organizational performance by interacting with information quality. However, this is not in line with contingency theory which urges an organization to take several considerations for workers, the managerial department influencing company boards, shareholders, or other stakeholders’ preferences. The leaders lack to implement good organizational culture.

This study is also not in accordance with contingency theory. It is a theory which explains that adaptation to the specific desired decisions is required for accounting information systems. The decisions are made by considering the environment and organizational structure (Dandago & Rufai, 2014). Thus, it is related to the quality of the data processed needed for the process of accounting information systems to support the organizational performance achievement. Özçelik and Aydinli (2006) explain that the performance of a system has an influence on organizational agreements and performance in the work environment. This is not in line with contingency theory according to Gordon and Miller (1976). It lays the basic framework to consider the accounting information systems from a contingency perspective. Accounting information systems need to be adaptive to the specific decisions. Then, leaders are assumed not to apply good organizational culture related to innovation and risk development; attention to detail; orientation of output, public, team; aggressiveness; stability, and their influencing employees to provide data reliability to the user interests.

5. CONCLUSION

The study is to discover the impacts of service quality, information quality, data quality, system quality of public sector organization and organizational culture performances as a moderating variable. Based on the results of the analysis done with a series of hypothesis testing, it summarizes the quality of service has affected the performance of public sector organizations positively. This shows that the better system quality improves the performance of public sector organizations in each each RAO at the Regional Secretariat (Regional Secretary, Section Assistant and Section Chief), at the DPRD Secretariat (DPRD Secretary and Section Head), at Office and Agency (the Office Head or Agency Head and the Office Secretary or Agency Secretary). The quality of information, data, and system do not affect the performance of public sector organizations positively. This shows that if the public sector organization gives low information to the public, processes data and uses facilities integrated with the agency system, the performance of public sector organizations in each RAO will decline.

Organizational culture does not moderate the relationship between SQ, IQ, DQ, QS and OC of public sector organizations. This shows that the organizational culture adopted and disseminated weakens the relationship between service quality, information quality, data quality, system quality on the performance of public sector organizations as the sample in this study lacks understanding of organizational culture well. Thus, organizational culture weakens the relationship between SQ, IQ, DQ, QS and OC of public sector organizations.

The limitations of this study include: RAO objects are only in the South Lampung Regency Government; the time for respondents to explore more information related to the occupation and occupation is limited; sample taken in Regional Secretariat is only from the Regional Secretary, Section Assistant and Section Chief; sample taken in the DPRD Secretariat is only from the DPRD Secretariat and the Section Head, sample taken at the Office and Agency is only from the Head of Service or Agency Head and the Office Secretary and Secretary or Agency Secretary in the South Lampung Regency. In addition to the
dissemination process, Direct questionnaires to the location of each RAO in the Regional Government of South Lampung Regency was conducted during the Covid-19 virus pandemic. The respondents did not work every day. The sample majority is the respondents owning post-graduate education (S2) continued with bachelor (S1) or doctorate (S3) - only 1 person.

Suggestions for the Regional Government of South Lampung Regency are expected to be more active to provide services, information, data processing, using integrated systems to the community. Each RAO and RAO leaders and staff who hold positions to provide good leadership to subordinates need to be aware of the organizational culture to improve organizational performance. Then, the next study is expected to be able to examine organizational performance materially and add other independent variables such as employee motivation, employee performance, self-efficacy, and to use empowerment moderation variables. In addition, researchers are able to replace the object of research into RAO or private organizations in other regions in Indonesia.

REFERENCES

APPENDIX 1: Survey Questionnaire

<table>
<thead>
<tr>
<th>Variable</th>
<th>Item measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance Measurement</td>
<td>1. Carry out part of the duties or service authority in my field.</td>
</tr>
<tr>
<td></td>
<td>2. Formulate technical policies according to my field of work.</td>
</tr>
<tr>
<td></td>
<td>3. Compile data about work in my field of work.</td>
</tr>
<tr>
<td></td>
<td>4. Leading, developing and mentoring my subordinates.</td>
</tr>
<tr>
<td></td>
<td>5. Planning and implementing programs in my field of work.</td>
</tr>
<tr>
<td></td>
<td>6. Provide direction and training to my subordinates.</td>
</tr>
<tr>
<td></td>
<td>7. Assess and measure the performance of my subordinates.</td>
</tr>
</tbody>
</table>

Service quality	1. Adequate physical equipment.
	2. Officer appearance.
	3. Management procedure is clear.
	4. Officers master the problem.
	5. The seriousness and patience of the officer.
	6. Officer response speed.
	7. Officer alacrity.
	8. Telephone service.
	9. Certainty of time.

10.	Clerk solve problem on time.
11.	Officer credibility.
12.	Hear every complaint well.
13.	Friendly and polite attitude of officers.
14.	Understanding of user problems.

| Information Quality | 1. precise and accurate data
2. data according to activities
3. Timely delivery of data
4. The data submitted is up to date
5. The information presented is easy to read
6. There is a manual book |
| Data Quality | 1. The data presented is in accordance with reality
2. The data presented are not biased
3. The number of publications is quite a lot
4. Publication types/titles are quite diverse
5. The data presented is as needed
6. Complete data series
7. Data display is easy to understand
8. The data presented is consistent |
| System Quality | 1. User login is required to access agency facilities online
2. Automatic logout is activated after a period of inactivity
3. Anti virus software does not prevent the system from catching viruses
4. Our AIS is not regularly checked and managed by IT unit staff
5. The user interface of our agency information system is easy to use
6. The tutorials or instructions given by our AIS help to use the system easily
7. User interface design by our AIS is user friendly
8. I understand every AIS function
9. I'm not familiar with our AIS interface
10. Our AIS user interface items are easy to understand
11. Our AIS really helps my work efficiency
12. AIS processing speed helps me to get my work done very fast |
| Organizational Culture | 1. At work I am required to think innovatively
2. I was always required to be brave
3. Every time I do my job, I always prioritize accuracy, analysis and attention to detail
4. So far, I feel that management in the agency is prioritizing results and outputs
5. so far, I feel that decisions taken by management consider the impact of outputs on employees
6. The work that I do tends to prioritize time performance
7. Everyone who works is more aggressive and competitive than casual
8. The existing job always emphasizes stability rather than growth |