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ABSTRACT  

The main purpose of the research is to investigate nonlinear dynamics in bullwhip 
effect and search chaotic behavior. In the paper, a generalized supply chain 
model is simulated with safety stock regulations to expose the bullwhip effect. A 
seasonal demand model which fits Poisson distribution is utilized to generate 
orders from customers to retailers, continuously to distributors and a single 
factory. Using largest Lyapunov exponent analysis, orders are reconstructed in 
phase space and investigated chaotic behavior variations. Although it is assumed 
that increasing fluctuations of demand cause chaos and unpredictability, it is 
seen that predictability increases in bullwhip effect. In chaotic research aspect, 
demands from customers are still more chaotic than orders reach to the factory. 
Due to data generation, it is still a realization of a supply chain, therefore working 
on real data is suggested. The paper includes implications for giving ideas of 
nonlinear dynamics of bullwhip effect. This paper provides a novel approach to 
supply chains with comparing dynamics of demands and orders to identify which 
exhibits more chaotic behavior.   

 

1. INTRODUCTION
Supply Chain is a complex system in which a nonlinear time series model exists, known as 
Bullwhip Effect. Bullwhip Effect is a problematic situation in a supply chain which is 
clarified as increasing variability of demands as a result of keeping safety stocks (Forrester, 
1961). The results of bullwhip effect are summarized as; excess inventories, surplus or 
short capacities, higher and unnecessary inventory costs. Moving up the supply chain from 
customers to factory, orders are increased and demonstrate more fluctuations. These 
oscillations and amplifications are expected to reduce predictability of the orders moving 
upstream in the chain. Therefore, it is assumed that high fluctuation causes ambiguity 
which is chaotic and less predictable. 

Unpredictability of a dynamic system is calculated with Lyapunov exponent analysis and 
positive largest Lyapunov exponent indicates chaos (Rosenstein et al., 1993). Although 
there is no constant definition of chaos, it can be simplified as aperiodic, long-term 
behavior of a dynamic system that exhibits sensitive dependence on initial conditions 
(Sprott, 2003).  

There are a few number of studies have researched chaotic dynamics of bullwhip effect. 
Two very similar papers propose to adapt bullwhip effect to Lorenz equations (Renzhong 
and Gongyun, 2011; Lei et al., 2006). They expressed the mathematical model of bullwhip 
effect from end customers to producers in three difference equations and transformed to 
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Lorenz model. Anne et al. (2009) also researched chaos in supply chain using Lorenz model.  

Ma and Feng (2008) presented mathematical form of bullwhip effect using demand and 
prices, constructed time delay vectors and investigated bifurcations. Makui and Madadi 
(2007) used largest Lyapunov exponent analysis to investigate chaos in bullwhip effect 
however; the numerical example in their paper is too short for Lyapunov exponent 
convergence. Stapleton et al (2006) published a research note and introduced chaos theory 
as a possible enhancement of effectiveness of a supply chain. 

In this study, a supply chain model is constructed with 100 retailers, 10 distributors and one 
factory. We generated daily customer demand data for ten years, which fits Poisson 
distribution, added sinusoidal seasonality for weekdays. After data generation, we 
simulated orders and investigated chaotic dynamics using Lyapunov exponent method. 

2. DATA GENERATION 
The first step of our research involves constructing a simple supply chain model. Our study 
is based on the four level supply chain illustrated in Fig.1 whereas some articles about 
bullwhip effect don’t take customer as a level, and place wholesaler between retailer and 
distributor (Machuca and Barajas, 2004).  

Fig.1. Diagram of Our Supply Chain Model 

 
 

After constructing the chain system, we generated random numbers as customers’ orders 
to retailers,    which fit homogenous Poisson distribution. The Poisson distribution 
expresses the independent probability of an event occurring in an interval of time, with 
certain average (Gullberg, 1997). This distribution can be used conveniently while 
generating arrivals or orders. 

Poisson distribution focuses on a random variable that is discrete and countable. The 
expected value of an event’s occurrence, which is independent of the previous event, is 
shown as α. The probability of a positive integer of k event occurrence is given by; 

𝑓(𝑘,𝛼) =
𝛼𝑘𝑒−𝛼

𝑘!
 

where e is the base of the natural logarithm. 

While generating 3650x100 demand data for 100 retailers, we choose α=4 for our 
simulation hence mean μ and variance σ2 equal to 4. For the purpose of making data more 
realistic and differentiating weekdays, we added sinusoidal seasonality S to the demand 



Journal of Management, Marketing & Logistics - JMML (2015), Vol.2(1)                           Aslan, 2015 

39 

data A, therefore, weekends would have more demand. The sinusoidal equation is shown 
below: 

𝑆 = �2 �𝑠𝑠𝑠 �
2𝜋
7
𝑚𝑚𝑚(𝐴, 7)� + 1�� 

After taking the integer value of the result, no subtraction would take place; only 0 to 3 
demands would be added to the daily demand data. After generation of the data, we 
started our simulation to expose bullwhip effect. 

3. SIMULATION 

The simulation model has these assumptions; all retailers have 10 safety stock capacity and 
order to related distributor when stock levels drop under 5, all distributors have 100 
capacity and order to factory when levels are below 50. As expected, order oscillations and 
values are increased while moving up to factory, illustrated in Fig. 2. 

Fig.2. Simulated Bullwhip Effect 

 
 

These values are daily consolidated data of demands from the customers (retailer curve), 
of orders to distributor (distributor curve) and to factory (factory curve). As seen on the 
figure, fluctuations increase severely, that should make the system become more chaotic 
and unpredictable. However, without Lyapunov exponent analysis, it would be a 
misjudgment.  

Additionally, in order to confirm the output of the simulation, we run the system 10 times 
starting from data generation and compared largest Lyapunov exponents with student t-
test. 
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4. LYAPUNOV EXPONENT ANALYSIS 
Calculation of the largest Lyapunov exponent is mostly used method to discover chaotic 
behavior where sign of the largest positive exponent indicates chaos and value of the 
positive exponent demonstrate how chaotic the system is.  

Although there are numerous major studies about calculating largest Lyapunov exponent 
from time series (Wolf et. al., 1985; Echmann et. al., 1986; Sato et. al, 1987; Brown et. al, 
1991; Abarbanel et. al., 1993), each method offers only an estimation of the Lyapunov 
exponent, not the exact value.  

However, estimations are useful when comparing the largest Lyapunov exponents of 
multiple data sets. The standardized Lyapunov analysis begins with phase space 
reconstruction (Kantz and Schreiber, 1997).  

𝑋(𝑡)  =  { 𝑥(𝑡), 𝑥(𝑡 + 𝜏 ). . 𝑥[𝑡 + (𝑚 − 1)𝜏]} 

In this equation m is embedding dimension and τ is embedding delay. Selecting these 
parameters correctly is the main issue for single time series. The embedding delay is 
estimated using autocorrelation and mutual information functions. Autocorrelation 
function displays linear dependency between X(t) and X(t+τ). The first zero-crossing point 
of autocorrelation graph gives proper delay value (Buzug and Pfister, 1992) and also the 
first minimum of mutual information function usually should point the same value (Fraser 
ve Swimney, 1986). 

The embedding dimension is usually estimated using false nearest neighbors in 
accordance with Takens’ theorem (Takens, 1981). This dimension identifies the factors 
that affect main variable of the time series, additionally determines the Lyapunov 
spectrum. In other words an m dimensional system has m Lyapunov exponents. The 
nearest neighbor of each point is found by searching for the point which minimizes the 
distance to a particular point. After iterations the neighbors are moving apart from each 
other that clarifies it was a false neighbor. At some point, false neighbors become zero; 
herewith the first minimum point of false nearest neighbor graph states the embedding 
dimension. Thus, the largest Lyapunov exponent is estimated with calculating separation 
rate of the neighbors (Rosenstein et. al., 1993)  

5. RESULTS 
This study depends on comparisons of Lyapunov exponents; therefore we estimated 
embedding dimension m and embedding delay τ for the first simulation and hold them 
constant for the others. Calculation of m and τ is illustrated in Fig.3. 
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Fig.3. Example of embedding delay (on the left) and embedding dimension (on the 
right) graphs 

 
Actually, these parameters do not fluctuate over simulations, taking m=5 and τ=10 as 
constants for all analysis doesn’t cause inaccuracy. For the first simulation, positive 
Lyapunov exponents are calculated and are shown in Fig.4. There are two considerable 
advices to calculate largest Lyapunov exponent from entire positive exponents: First 
method is numerical calculation of largest Lyapunov exponent (Schuster, 2004) which is; 

𝐿𝐿𝐿 = lim
𝑛→∞

1
𝑠
�𝜆𝑖

𝑛

𝑖=1

 

This method is useful for very large number of data set therefore we used the second 
method that is estimating largest Lyapunov exponents where the convergence occur 
(Peters, 1996). An example of approximate convergence is shown in Fig. 4. below. 

Fig.4. Convergence of Largest Lyapunov Exponents 

 
In this simulation, LLE-Retailer≈0.584, LLE-Distributor≈0.466 and LLE-Factory≈0.406 are 
calculated. Wherefore largest Lyapunov Exponent is an average of unpredictability or 
global measure of sensitivity of the system to slight changes (Williams, 1997), 
predictability increases unexpectedly moving up in the supply chain. The orders of factory 
has smaller Lyapunov exponent than others, although it has more oscillation and 
amplification. 
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After 10 simulation sets, we achieved average largest Lyapunov exponents. The mean of 
these exponents is illustrated in Fig.5. with maximum and minimum levels.  

Fig.5. Calculated mean, max and min values of Largest Lyapunov Exponents

 
The last issue is to determine whether the differences are significant. We made student t-
test for paired means and compared t-stats with two tailed t-critical values for 0.01 
significance level. For first two means, which are retailer-distributor and retailer-factory 
pairs, t-stats 53.80933 and 28.50217 are significantly larger than t-critical value 3.249834. 
Also for distributor-factory pairs, we found t-stat 5.844 that is larger than 3.249834 
likewise. The statistical results prove that Largest Lyapunov exponents and chaotic 
behavior decreases significantly from retailers to factory. 

6. CONCLUSION AND DISCUSSION 
Firstly, we have presented a supply chain model and seasonal Poisson data generation in 
this paper. As results of the simulations we reached bullwhip effect and searched whether 
the bullwhip exhibit chaotic behavior. Hence largest Lyapunov exponent is numerical 
indicator of chaos presence, by the method of phase space reconstruction, after 
calculating the embedding dimension and delay; we analyzed the largest Lyapunov 
exponents of supply chain orders.  

Simulation results prove that chaotic behavior of the system decreases while moving on 
supply chain from retailers to factory. Largest Lyapunov exponents differ significantly after 
3650 days of iterations and 10 repetitions. Generated seasonal retailer’s demand data has 
more unpredictability and chaotic behavior while it has less fluctuation. Against all 
expectations, orders to distributors and to factory lead the system to behave less chaotic 
while more frequent and amplified oscillations are taking place. 
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