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ABSTRACT  
Purpose- This study aims to illustrate the efficiency of pure jump processes, more specifically Variance Gamma (VG) and Normal Inverse 
Gaussian models (NIG), in option pricing by comparing with the Black Scholes (BS) option pricing model for emerging markets.     
Methodology-   This study presents an alternative derivation of option pricing formulas for VG and NIG models. Then, it investigates the VG 
and NIG models' option pricing performance with the help of new derivation by comparing them with the BS option pricing model for 
emerging markets for an emerging country, Turkey. The data consists of the BIST30 index daily price and European options written on this 
index extend from 05 May 2018 to 05 May 2020 for given exercise prices with a maturity of 90 days. In this period, the European call options' 
strike prices range from 1200 to 1650, and the European put options' strike prices range from 1000 to 1400. To compare the models' 
efficiency, first, we calibrate the models by minimizing the sum of squared deviations between the observed and theoretical option prices. 
Second, we compute the option prices and compare the results with the observed option prices. 
Findings- The significant contribution to the literature is the calibration of the pure jump processes (VG and NIG processes) using the 
characteristic functions, the continuous BS prices for an emerging market, and the computation of European options prices in BIST. We find 
that while the NIG process performs better than VG and BS models, the BS model is the worst in option pricing. 
Conclusion- The pure jump processes (VG and NIG processes) can be calibrated using the characteristic functions, and option price 
estimations with them are better than the continuous BS prices for an emerging market. Thus, the pure jump processes are more efficient in 
market modeling than the BS model. 
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1. INTRODUCTION   

The 2008 Global Financial Crisis (GFC) fundamental policy response was a sudden noble increase in the money supply, defined 
as quantitative easing by governments worldwide. Company and even country bailouts have occurred as an immediate 
consequence of the GFC. Since the GFC, the money supply has been escalating exponentially worldwide, breaking historical 
records of the money supply. On the other hand, nominal interest rates have been extraordinarily and persistently either 
negative or almost zero in most developed countries. Such a sustained response and humble policy rate cut are unlikely to 
feed bubbles rapidly in emerging economies. While financial markets and economic activities have picked up pace and display 
signs of health, we have anecdotal evidence that both depend crucially on the repeatedly reinforced perception through 
previous regulatory actions. Hence, policymakers assist endorsement gradually and thoroughly in their economies. However, 
skeptics, including those with notable influence and visibility, argue that risks are gathering on the horizon for yet another 
economic and financial crash, which may substantially impact the global financial system as the GFC. 

The globalization of economies motivates a rapid increase in the expansion of derivatives and exchange markets. Such 
markets become extremely attractive to investors since they contain new investment vehicles used for hedging purposes. 
Furthermore, markets observe information on investors' views on option prices and share prices. In this respect, the options 
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and shares are also used for speculative investments in the derivatives market in emerging markets (Alp, 2016). Investors are 
eager to invest in emergent investment vehicles for higher yields in emerging markets.  

On the other hand, as previously Alp (2016) indicated, emerging markets are more volatile with superior risk premiums than 
developed markets. In this respect, the GFC primarily affected the developed economies and increased the investment speed 
in emerging markets. In particular, options tied to stock exchange indexes are regarded as one of the most charming 
investment tools for foreign investors since they provide appropriate exposure to local exchange markets.  

On the other hand, such options in most emerging markets are comparatively in the early stage compared to those in the 
developed markets. As Alan et al. (2016) emphasized, previous studies on index options that analyze developed markets show 
that index options' pricing efficiency and hedging benefits are less efficient than throughout the early trading periods. Hence, 
derivatives markets and efficient pricing models of options and underlying assets are vital for hedging prospects in emerging 
markets. 

Considering the rise in the flows of capital to the emerging markets following the GFC, this paper concerns the latter, namely 
the specification of the stochastic processes that underlying assets evolve and the estimation of European put and call option 
prices for an emerging market, more precisely Turkey's stock Exchange market. The study examines the fitting behaviors of 
the selected models to the BIST30 index price evolution. In an arbitrage-free market environment, the derivative price is 
nothing but the discounted value of expectation of the future payoffs under the specified risk-neutral measure. Therefore, 
such a pricing formula has three fundamental components: The risk-free rate (bank account), the contract specification (for 
instance, payoff function, etc.), and the stochastic process that the underlying asset evolves from (Eriksson et al., 2009). 
Hence, we start with identifying of stochastic processes that represent the dynamics of the BIST30 index. The most commonly 
used model in literature and real-life applications is the Black-Scholes model (BS) developed by Black and Scholes (1973). 
Hence, we compare the selected models with BS to identify their accuracy. 

The implied volatility smile phenomenon reveals that the BS systematically leads to mispricing out-of-the-and-in-the-money 
options when the implied volatility of the at-the-money option is taken into account. Therefore, many stochastic volatility 
models, such as Hull&White (Hull & White, 1987), Stein&Stein (Stein & Stein, 1991), and Heston (Heston, 1993), have been 
designed to mirror the volatility smile phenomenon effect. However, such models still generate mispricing since they lack to 
capture jumps in the underlying asset price. Hence, Madan and Senata (1990) developed a continuous-time stochastic process 
called the Variance Gamma (VG) model to predict the uncertainty of the underlying asset return. They provide a practical and 
empirically relevant alternative to Brownian motion's role as the martingale component of the motion in log prices. Instead 
of just a distribution for log returns, the importance of introducing a stochastic process is crucial for applications to European 
option pricing that do not individually compute risk-neutral expectations but account for risk aversion via the identification 
of an exact change of measure (Harrison & Pliska, 1983). Also, Barndorff (1997) offered a normal-inverse Gaussian distribution 
(NIG) process, which is a continuous stochastic process. It is given as a normal variance-mean mixture where the mixing 
density is the inverse Gaussian distribution. Geman et al. (2001) showed that such improvement is motivated by a better fit 
to the data, improved option pricing and hedging strategies, and theoretical considerations. 

The research on some of the fundamental problems of emerging markets needs to be improved, particularly Borsa Istanbul 
Stock Exchange (BIST). We have recognized a literature gap about the performance of various models for the BIST30 index 
returns and pricing options tied to this index. While a substantial and expanding body of literature has examined CAPM and 
FAMA FRENCH models (i.e., Coskun et al. (2017) and references therein), the models based on the stochastic processes are 
limited for BIST to our best knowledge. In contrast to those studies, this study contains three critical contributions to the 
literature: First, we fit two Lévy (pure jump) models (VG and NIG) to an emerging market, namely the BIST30 index, and 
estimate the option prices appealing interpretation and tractability. Hence, throughout our analysis, we calibrate (determine 
the models' parameters) the pure jump processes and compare their results with the classical BS. Second, we compute the 
option prices using the calibrated processes and compare their results with the observed options' prices. This analysis shows 
that the pure jump processes are better than the classical BS in option pricing for the BIST30 index. Therefore, using the VG 
and NIG models for emerging markets is better. Third, we find delta hedging coefficients corresponding to the models we 
consider and show that the delta hedging for pure jump processes is superior to the classical BS. 

The remainder of the study is outlined as follows. Section 2 summarizes the literature on stochastic models and their usage. 
Section 3 is dedicated to giving a brief on BIST and related derivatives markets. Section 4 briefly describes the structure of 
the Lévy processes to be employed and their primary properties and relevance to option pricing theory. In Section 5, we give 
the details of the data. Section 6 presents the calibration results and estimated option prices, contains the models pricing 
efficiency, and Section 7 concludes the study.      
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2. LITERATURE REVIEW  

Stochastic processes are at the center of option pricing theory. These processes are classified into two broad categories based 
on their sample paths: i) continuous processes and ii) discontinuous processes. In this study, we are dealing with the pure 
jump processes, VG, and NIG processes. Hence, this section concentrates on only the literature on the two critical and popular 
exponential Lévy models. 

On a typical underlying asset, for instance, the S&P 500 index, approximately 200 option prices range across twenty strikes 
and ten maturities at any instant, which is defined by the considered model consistently through the calendar time. From this 
viewpoint, the BS model's simplicity is unrealistically glaring (Konikov & Madan, 2002) since, generally, log returns show 
deviations from the normality assumption. Therefore, most research on the jump-diffusion models has emphasized using a 
diffusion component to describe the relatively large number of small price movements. In contrast, an orthogonal Poisson 
process with a finite number of sizable moves per unit of time is used to model the large and relatively rarer log return 
movements (Konikov & Madan, 2002). 

More attention has focused on providing the search for special Lévy models to outperform the BS model was initiated since 
Mandelbrot (1963). Lévy processes and the jump-diffusion models are generally successful at fitting the volatility smile 
phenomena for a single maturity since these models can incorporate both the skewness and kurtosis properties into the 
marginal distribution of underlying assets. However, these processes fail to fit in the calibration of multiple maturities. Cont 
and Fonseca (2002) contributed a considerable model to the literature; contrary to the Lévy processes, Brownian motion has 
zero skewness and excess kurtosis, which possibly causes the volatility smile phenomena. After Madan and Senata (1987) 
considered the key findings of Praetz (1972) and issued the prior symmetric edition of the VG process with zero mean, a 
broader nonnegligible improvement has been adopted to the VG process, a Lévy process (e.g., the hyperbolic/ NIG process 
in Barndorff-Nielsen (1977) or Eberlein et al. (1995)), as alternatives to the standard BS model. 

The literature on the VG process has highlighted two significant parts; theory and application. The univariate case where 
Madan and Senata (1990) extended the BS model by applying the VG process in the option pricing framework. Madan et al. 
(1998) concluded that the VG option pricing decreases the bias of option pricing contrary to the BS model, as the VG process 
controls the excess kurtosis caused by the jumps in the log returns. Daal and Madan (2005) used such a novel assessment for 
a numerical illustration of the VG option pricing model, the classical BS model, and Merton (1976)’s jump-diffusion model for 
the options written on foreign currencies. The authors justified Madan and Senata (1990)’ conclusions that the VG option 
pricing model is superior to the other models. For further numerical illustrations of the VG process, interested readers may 
find more details in Leicht and Rathgeber (2014).  

Several VG process variations, like the Carr Geman Madan Yor (CGMY) process introduced by Carr et al. (2002), are introduced 
to the literature. The multivariate case concerns the integrating correlations and the relation among the Lévy processes. For 
a general view, see, for instance (Luciano & Semeraro, 2013; Luciano & Schoutens, 2006; Luciano & Semeraro, 2010; 
Semeraro, 2008).  To summarize, the VG process, like the other Lévy processes, suggests many possibilities for asset pricing 
and modeling risk by decreasing the pricing error or miscalibrations of the models that the underlying assets evolve. Such 
models help involve jumps, map a realist market behavior compared to the traditional models, and are essential instruments 
from financial mathematics. 

The NIG model introduced in Barndorff (1977) is also one of the most popular Lévy models due to its flexibility. At the same 
time as its relevance to practice, the NIG process is challenging for mathematical illustrations. However, this modeling family 
has been widely used in mathematical finance (Eberlein, 2001).  

Many computational and statistical procedures are developed for European option pricing in this context. We have three 
major types of numerical valuation methods: (i) The method of Monte Carlo simulation, (ii) the numerical solution of the 
partial integration-differential equations related to the model, and (iii) Fourier transformation methods (Eberlein, 2014). 
Additionally, Ivanov (2013) has given analytical solutions for European Call and digital options under the assumption that the 
underlying asset price dynamics evolve from the exponential NIG model. The application of the NIG distributions is defined 
by considering the moments; mean, variance, skewness, and kurtosis. Such moments are essential to many risk management 
applications. One strength of this class is that authors associate individual derivatives pricing to these risk-neutral distribution 
moments, which intuitively reviews how the moments can interpret the derivative price behaviors (Eriksson et al., 2009). 

For the ‘symmetric case’, a reasonable hypothesis for the price of equities, these models need only one extra parameter given 
by 𝜅, compared to the two-parameter the BS model. Such an extra parameter corresponds to the percentage of excess 
kurtosis connected to the normal distribution. Therefore, 𝜅 primarily controls the tail thickness of the underlying asset log 
return distribution. Therefore, it determines the ‘excessively’ large positive or negative log return frequency of the underlying 
asset. Both VG and NIG models are in the family of pure-jump stochastic models with infinite jump activity (i.e., models having 
infinitely many jumps during survival time [0, 𝑇], 𝑇 < ∞ ). Even so, 𝜎  controls the log returns variability of the underlying 
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asset. Consequently,  𝜎 is considered the price process volatility (Viens et al., 2011). Various papers focusing on empirical 
analysis have confirmed that some parametric exponential Lévy models (ELM), such as VG and NIG models, can fit daily log 
returns of underlying assets unbelievably well with the classical calibration methods, e.g., maximum likelihood estimators 
(MLE) or method of moment estimators (MME) (Barndorff, 1997; Behr and Pötter, 2009; Eberlein, 1995; Madan et al., 1998). 

3.TURKEY'S STOCK EXCHANGE AND DERIVATIVE MARKETS 

The Borsa İstanbul Stock Exchange (BIST) is the single exchange market in Turkey. It is organized to supply trading in bills, 
equities, revenue-sharing certificates, bonds, and international securities. Turkey's securities exchange legal framework was 
completed in 1982, and started its operation with 40 listed corporations in 1986. Until a manual system was authorized in 
late 1987, the trade floor activities were limited to licensed brokers, but unlicensed investors could directly execute their 
orders. In 1989, Turkey's financial system changed to a liberalization system, and then, foreign investors became allowed to 
invest in portfolios that consisted of stocks traded in BIST. Since November 1994, the number of assets in the market 
increased drastically by 2003. The daily trading volume of the market has reached an amount of 2.972 billion US dollars. As 
Bastı et al. (2015) emphasized, BIST has got into the first thirty largest exchange markets among the stock exchanges 
worldwide and has new memberships in numerous international federations and associations (e.g., the World Federation of 
Exchanges, Federation of Euro-Asian Stock Exchanges, Federation of European Securities Exchanges, and International Capital 
Market Association).  

There are five sub-markets in BIST that investors can operate. Namely, the equity, futures, and options written on stocks and 
indexes, the debt securities, the emerging companies, and the precious metals and diamond markets. Additionally, there are 
eight sub-markets under the equity market: the national, the collective products, the secondary national, the watch-list 
companies, the primary, the wholesale, the rights coupon markets, and the free trade platform (Bastı et al., (2015). 

BIST may be described as regulated by restrictive monetary policy and is led by high-interest rates and large budget deficits. 
There are limited numbers of studies explaining stock returns and option prices using stochastic processes during the BIST's 
short history. Even though many studies investigate option pricing for developed and many emerging economies, the studies 
focusing on option pricing in Turkey's derivatives market are extremely limited. Demir and Tutek (2004) analyzed the 
applicability of the numerical martingale simulation method for pricing the options tied to the options that are traded in BIST. 
However, instead of studying real options, the authors hypothetically generate a set of options tied to the BIST Composite 
Index. In the end, the authors highlighted the method that outputs option prices closer to those driven by the BS model. 
Later, Akyapı (2014) investigated the differences between real and hypothetical option prices that are again estimated from 
the BS option pricing formula in the BIST30 index. Akyapı (2014) showed that Turkey's options market permits arbitrage 
opportunities. The author also observed that the observed option prices are unequal to prices computed by the BS option 
pricing method. 

Tokat (2009) searched the volatility of the BIST30 index for January 1990-April 2007. The author perceived unexpected 
changes in the volatility of the log return and leptokurtic distribution with additional kurtosis. On the other hand, Kayalidere 
et al. (2012) investigate the effect of GARCH, the tradeoff of risk and return, and the effect of day-of-the-week on the BIST30 
future contracts for the 2006-2011 period. They found that the BIST30 index has fat-tailed distribution with negative 
skewness. Also, Gokgoz and Sezgin-Alp (2014) modeled Turkey's BIST100 market index under the Arbitrage Pricing Theory 
assumption using the Artificial Neural Networks method. They emphasized that the BIST30 index has a leptokurtic feature. 
Kayalidere et al. (2012) reflected that the BIST30 futures volatility is affected more by unfavorable news than favorable news. 
The tradeoff of risk-return is irrational, and the market is not weak-form efficient. Ersoy and Bayraktaroglu (2013) examined 
the lead-lag link between the spot and future markets utilizing the daily closing prices of the BIST30 index and futures 
contracts tied to this index. They conclude that there is not a lead-lag association among these markets. Akyapı (2014) 
investigated the deviations within the real and hypothetical prices derived from the BS option pricing formula in the BIST30 
index. He revealed that options markets might be exposed to arbitrage opportunities in BIST.  Also, he showed that, generally, 
the real option prices are unequal to the numerical option prices. 

4.THE STRUCTURE OF VG AND NIG PROCESSES 

4.1. Variance Gamma (VG) Process  

The VG process considers both the symmetric increase in the left and right tail probabilities of the log return distribution 
(kurtosis) and the asymmetry of the left and right tails of the log return density (skewness). These properties allow a more 
accurate representation of stock returns (Rathgeber et al., 2016). Based on Madan et al. (1998), we can write the call option 
price for a VG process in the BS manner as in the following proposition. 

Proposition 1: Let the stock price process 𝑆(𝑡) be the VG process from which the underlying asset evolves. Then, the European 
call option price equals to 
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𝐶(𝑆(0), 𝐾, 𝑟, 𝑇, 𝜃, 𝜈, 𝜎) = 𝑆(0)𝐹𝑆(𝑋, 𝜃𝑆 , 𝜎, 𝑇, 𝜈𝑆) − 𝐾𝑒−𝑟𝑇𝐹(𝑋, 𝜃, 𝜎, 𝑇, 𝜈), 

where 𝑋 = 𝑙𝑜𝑔 (𝑆(𝑡)/𝐾 ) + (𝑟 − 𝜙𝑉𝐺(−𝑖))𝑇 and 𝜈𝑆, 𝜃𝑆, 𝜎 represent parameters of the VG process, and 𝜙 is the log-
characteristic function, respectively.  

Proof: The proof is given in Appendix B. 

Here, we present an alternative derivation given by Madan et al. (1998) for the VG option pricing formula. However, our new 
derivation procedure helps write a similar structure for the NIG process in a BS option price formula. 

We introduce the CDFs that are used to calculate the VG model option pricing by using the densities that we derive in 
Appendix B for the VG process, 

𝐹𝑆(𝑋, 𝜃𝑆, 𝜎, 𝑇, 𝜈𝑆, 𝜈) = ∫
2 exp (

𝜃𝑆 𝑥
𝜎2 )

Γ (
𝑇
𝜈

) √2𝜋𝜈
𝑇
𝜈

−1

𝑋

−∞

 (
𝑥2

2𝜎2

𝜈𝑆
+ 𝜃𝑆

2
)

𝑇
2𝜈𝑆

−0.25

×

𝐾𝑇
𝜈

−0.5
(
𝑥2

𝜎2 (
2𝜎2

𝜈𝑆
+ 𝜃𝑆

2))

√𝑥2 +
𝑇2

𝜈

𝑑𝑥, 

𝐹(𝑋, 𝜃, 𝜎, 𝑇, 𝜈𝑆, 𝜈) = ∫
2 exp (

𝜃 𝑥
𝜎2 )

Γ (
𝑇
𝜈

) √2𝜋𝜈
𝑇
𝜈

−1

𝑋
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 (
𝑥2

2𝜎2

𝜈
+ 𝜃
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𝑇
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×

𝐾𝑇
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(

𝑥2

𝜎2 (
2𝜎2

𝜈
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√𝑥2 +
𝑇2

𝜈

𝑑𝑥, 

where 𝜃𝑆, 𝜈𝑆, and 𝜎 are VG parameters under ℚ𝑆 measure, and 𝜃, 𝜈, and 𝜎 are parameters under ℚ𝑆 measure and 𝐾𝑇

𝜈
−0.5

 

represents the Modified Bessel function of the second kind (MacDonald's function). 

2.2. Normal Inverse Gaussian (NIG) Process 

As a model of underlying asset return evolution, the NIG process is a particular case of the generalized hyperbolic 
distributions, primarily introduced by Barndorff (1997). Barndorff (1997) analyzes the NIG process, including the derivation 
of the Lévy measure of this process, obtaining its properties, and proposing an Ornstein-Uhlenbeck process of the NIG type 
and an NIG type stochastic volatility model. The distribution of the NIG characterization is done by a normal inverse Gaussian 
mixing distribution.  

Definition 1: Let 𝑌 be a random variable that follows an inverse Gaussian probability law (IG) given as in Eriksson et al. (2009) 

ℒ(𝑌) = 𝐼𝐺(𝛿, √𝛼2 − 𝛽2). 

Now, suppose that 𝑋 is a conditional process on 𝑌, and it is normally distributed with mean 𝜇 + 𝛽 𝑌 and variance 𝑌  
(𝐿(𝑋|𝑌) = 𝑁(𝜇 + 𝛽 𝑌, 𝑌)). Then, the conditional density 𝑋 is an NIG 

ℒ(𝑋) = 𝑁𝐼𝐺(𝛼, 𝛽, 𝜇, 𝛿). 

The NIG 𝑋 has a density function given as in the following theorem. 

Theorem 1: The 𝑁𝐼𝐺(𝛼, 𝛽, 𝜇, 𝛿) distribution, given for the parameters 𝛼, 𝛿 ≥  0 , |𝛽| ≤ 𝛼, 𝜇 ∈ ℝ  has a density 

    𝑓(𝑥) =
 𝛼𝛿

𝜋

𝐾1(𝛼√𝛿2 + (𝑥 − 𝜇)2)

√𝛿2 + (𝑥 − 𝜇)2
𝑒𝛿𝛾+𝛽(𝑥−𝜇) , 

where 𝛾 = √𝛼2 − 𝛽2 and 𝐾1 is the modified Bessel function of the third kind. Then, any process 𝑋𝑡  that has a 

𝑁𝐼𝐺(𝛼, 𝛽, 𝜇 𝑡, 𝛿𝑡) distribution is called a NIG Lévy process. Such processes are pure jump processes, and their Lévy measure 
has the following density 

    𝜈(𝑥; 𝛼, 𝛽, 𝛿) =
𝛿𝛼

𝜋|𝑥|
𝑒𝛽 𝑥𝐾1(𝛼|𝑥|). 

Proof: The proofs may be found in Barndorff (1997).  □ 

Remark 1:   An 𝑁𝐼𝐺(𝛼, 𝛽, 𝛿, 𝜇) distributed random variable has the moments: 

 Mean: 
𝛽𝛿

√𝛼2−𝛽2
+ 𝜇, 

 Variance: 
𝛼2𝛾

(𝛼2−𝛽2)
3
2

, 
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 Skewness: 
3𝛽

𝛼√𝛿(𝛼2−𝛽2)
1
4

, 

 Kurtosis: 3(1 +
𝛼+4𝛽2

𝛿𝛼2√𝛿(𝛼2−𝛽2)
). 

Proof:  See the detailed proof in Barndorff (1997).   □ 

Remark 2: The characteristic exponent of 𝑋 is given as 

𝜅(𝜉) = 𝜇𝜉 + 𝛿[√(𝛼2𝛽2) − √𝛼2 − (𝛽 + 𝜉)^2]. 

The NIG class of densities has two key properties: 

 Scaling property, 

        𝐿𝑁𝐼𝐺(𝑋) = 𝑁𝐼𝐺(𝛼, 𝛽, 𝜇, 𝛿) ⟺ ℒ𝑁𝐼𝐺(𝑐𝑋) = 𝑁𝐼𝐺(
 𝛼 

𝑐
,
𝛽

𝑐
,
𝜇

𝑐
, 𝑐𝛿). 

 A closure under convolution property 

𝑁𝐼𝐺(𝛼, 𝛽, 𝜇1, 𝛿1) ∗ 𝑁𝐼𝐺(𝛼, 𝛽, 𝜇2, 𝛿2) = 𝑁𝐼𝐺(𝛼, 𝛽, 𝜇1 + 𝜇2, 𝛿1 + 𝛿2). 

The NIG distribution is infinitely divisible and hence generates a Lévy process (𝑍𝑡), 𝑡 ≥ 0 (i.e., a stochastic process with 
stationary and independent increments, 𝑍0 = 0 a.s. and 𝑍1 is NIG-distributed). Now, let 𝑆𝑡, for 𝑡 ≥ 0, denotes the price of a 
non-dividend-paying stock at time 𝑡, and it postulates the following dynamics for the stock price 

    𝑑𝑆𝑡 = 𝑆𝑡−(𝑑𝑍𝑡 + 𝑒Δ 𝑍𝑡 − 1 − Δ 𝑍𝑡), 

where (𝑍𝑡), 𝑡 ≥ 0 denotes the NIG Lévy motion, 𝑍𝑡−  the left-hand limit of the path at time 𝑡, and Δ 𝑍𝑡 = 𝑍𝑡 − 𝑍𝑡− the jump 
at time 𝑡. Then, the solution of this stochastic differential equation is 𝑆𝑡 = 𝑆0𝑒𝑍𝑡, and it follows that the log returns, 
𝑙𝑛(𝑆𝑡/𝑆𝑡−1) are indeed NIG-distributed. 

Our objective is the risk-neutral valuation of derivative securities in this model environment. Hence, we must adopt an 
equivalent martingale measure since the NIG model is incomplete. In this study, we select the method of characteristic 
functions to determine an equivalent martingale measure. The characteristic function approach is appropriate whenever the 
stochastic process (𝑍𝑡), 𝑡 ≥ 0, has stationary and independent increments (Eberlein et al., 1995). 

Proposition 2: Let 𝑆(𝑡) be the NIG process that the underlying asset evolves. Then, the European call option price equals to 

𝐶(𝑆(0), 𝐾, 𝑟, 𝑇, 𝜃, 𝜃𝑆, 𝜅, 𝜎) = 𝑆(0)𝐹𝑆(𝑋, 𝜃𝑆 , 𝜎, 𝑇, 𝜅) − 𝐾𝑒−𝑟𝑇𝐹(𝑋, 𝜃, 𝜎, 𝑇, 𝜅), 

where 𝑋 = 𝑙𝑜𝑔(
𝑆(𝑡)

𝐾
) + (𝑟 − 𝜙𝑁𝐼𝐺(−𝑖))𝑇. 

Proof: We illustrate a detailed proof in Appendix B. □ 

The CDFs used to calculate the NIG model option price, using the densities derived in Appendix B for NIG process, 

𝐹𝑆(𝑋, 𝜃𝑆 , 𝜎, 𝑇, 𝜅) = ∫
𝑇

𝜋

𝑋

−∞

𝑒𝑥𝑝 (
𝑇

√𝑘𝜔
+

𝜃𝑆𝑥

𝜎2 ) ×

𝐾1(√𝜃𝑆
2 +

𝜎2

𝜔
,

1
𝜎2 √𝑥2 +

𝑇2

𝜎2𝜅𝑆
)

√𝑥2 +
𝜎2𝑇2

𝜅

 𝑑𝑥, 

𝐹(𝑋, 𝜃, 𝜎, 𝑇, 𝜅) = ∫
𝑇

𝜋

𝑋

−∞

𝑒𝑥𝑝 (
𝑇

√𝑘𝜔
+

𝜃𝑥

𝜎2) ×
𝐾1(√𝜃2 +

𝜎2

𝜔
,

1
𝜎2

√𝑥2 +
𝑇2

𝜎2𝜅
)

√𝑥2 +
𝜎2𝑇2

𝜅

 𝑑𝑥, 

where 𝜃𝑆, 𝜅𝑆, 𝜎 are NIG parameters under the ℚ𝑆 measure and 𝜃, 𝜅,  𝜎 are parameters under the ℚ measure. Also, 𝜔 =
1

1−𝑘(𝜎2−2𝜃
 𝑎𝑠 noted in Appendix B, and again, 𝐾1 represents the Modified Bessel function of the second kind (MacDonald's 

function). 

3. DATA  

In this study, we analyze the BIST30 index daily prices and its log returns and European call and put options written on it for 
05 May 2018 - 05 May 2020. We consider various European put (9 put options) and call (10 call options) options with various 
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strike prices (1200 to 1650 for call options and 1000 to 1400 for put options) with a 90-day maturity and gather the relevant 
data from the Bloomberg data stream for the empirical analysis given in this section.  

The descriptive statistics of the daily BIST30 index prices and its log return series are depicted in Table 1. The table shows that 
the average index price and its standard deviation are 99274.371 and 8132.956, respectively. Also, the index price series is 
highly right-skewed (skewness=1.0013). As a result, the BIST30 index price has a non-normal distribution property. On the 
other hand, its' log return series’ mean and standard deviation are 0.00119 and 0.015090, respectively. Further, the log return 
series is moderately left-skewed (skewness=-0.7436).  

Additionally, the log return series is too peaked and has a heavy-tailed distribution (kurtosis= 3.674>1) compared to the index 
price series. More importantly, the table shows that the BIST30 index price has negative log returns that may cause swear 
losses to investors if they do not hedge their positions. The descriptive statistics of the BIST30 price and its' log return series 
show that both series are not normally distributed and have tail properties. At this stage, we also present the histogram of 
the log return series in Figure 1. The figure also reveals that the log return series comes from a non-normal distribution family.  

Table 1: Descriptive Statistics of BIST30 and its Log Return Series 

 BIST30 Log return 

Std 8132.956         0.015090 

skewness  1.0013          -0.7436 

kurtosis  0.89194    3.674 

Mean  99274.371  0.00119 

Max  123556.102  0.05983 

Min 83675.296875 -0.08072 

Figure 1: BIST30 Log Return Distribution Characteristic of VG, NIG, and Normal Distributions 

 

To illustrate all three models' behaviors, we graph their paths that are simulated using the calibrated parameters in Figure 2. 
Here, it is worth emphasizing that the figure shows that the VG and NIG models show jump behaviors better than the BS and, 
hence, both are good candidates to capture the jumps, skew, and fat tails properties of the observed data. 
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Figure 2: A Simulated Illustration of VG, NIG, and BM Processes with the Fitted Parameters 

 

4. EMPIRICAL ANALYSIS OF OPTION PRICING 

As it is well known, instead of working on prices, working on returns is more convenient in financial data analysis due to the 
stationary problem. Hence, in our empirical analysis, we also used the log return series of the BIST30 index price. 

We illustrate the histogram of the BIST30 log return series along with its distribution fitting results of the VG, NIG models, 
and normal distribution in Figure 1. The figure combines a normalized histogram and density plots of the models to highlight 
the log return series statistical properties. In this figure, while the orange and green curve illustrates the fitting performance 
of the pure jump models VG and NIG, the red curve represents the normal distribution (GBM) fitting performance. Due to its 
Gaussian property, the BS model has a normal distribution. However, as evident from the plot, the BIST30 log return series is 
slightly left-skewed, with a peak at %0.01. There were also a few tiny peaks seen close to zero. Hence, it is not normally 
distributed. Therefore, we can conclude that VG and NIG fit better into the log return series than the Normal distribution. 
This is an expected result since the BIST30 log return series is not normally distributed. The BS model is based on GBM as an 
asset price process where the returns have Normal distribution. 

The parameters and their p-values that we find in the fitting process of the distributions are given in Table 2. The values in 
parenthesis are the p-values of the parameters. The standard deviation of the NIG and BS models are close to each other ( 
𝜎 = 0.015 and 𝜎 = 0.01568, respectively). In contrast, the VG model’s standard deviation (𝜎 = 0.011856) is lower than 
both NIG and BS models. On the other hand, 𝜇 values of the models vary. The corresponding p-values show that all parameters 
are statistically significant except the BS mean value 𝜇. Note also that the (-) sign means that the model does not include the 
corresponding parameter in this and the following tables. For instance, while all models include 𝜎, only the VG includes 𝜇. 
The values of these parameters correspond to the distribution parameters we graph in Figure 1. Hence, it is worth 
emphasizing, to not confuse the readers, that these parameters are not the calibrated parameters. The calibration results are 
introduced in the following section. 

Table 2: The Distribution Fitted Parameters of the Models (Fitted to Log Returns) 

 VG NIG BS 

𝜎 0.011856 
(6.084-13 

 0.015  
(0)        

0.01568 
 (0) 

𝜈 1.584  
(0) 

- - 

𝜅 - 0.868  
(0.0128) 

- 

𝜃 -0.0032  
(0.00189)  

-0.0045  
(0) 

- 

𝜇 0.0051  
(4.951-05)     

0.0045  
 (0)    

   0.000005032  
(0.10) 

𝐿(𝜇, 𝜎, 𝜃, 𝜈) -1364.821             -1366.754 - 
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Here, it is worth mentioning that our fitting procedure involves the maximum likelihood estimation (MLE) through the 
optimization of the following log-likelihood function introduced by Loregian and Rroji (V2012),  

𝐿(𝜇, 𝜃, 𝜎, 𝜈) =
𝑇

2
𝑙𝑜𝑔 (

2

𝜋
) + ∑

(𝑥𝑡 − 𝜇)𝜃

𝜎2

𝑇

𝑡=1

− ∑ log(Γ(𝜈)𝜎)

𝑇

𝑡=1

+ ∑ log (𝐾𝜈−0.5 (
√2𝜎2 + 𝜃2|𝑥𝑡 − 𝜇|

𝜎2 ))

𝑇

𝑡=1

+ ∑(𝜈 − 0.5)

𝑇

𝑡=1

[𝑙𝑜𝑔( |𝑥𝑡 − 𝜇| − 0.5𝑙𝑜𝑔(2𝜎2 + 𝜃2))]. 

As it is well-known, the optimization cost is affected significantly (positively) if the initial values of the models' parameters 
are chosen close to the local/global maximum points. Therefore, a relatively well-specified initial value is crucial in such an 
optimization procedure. Consequently, we introduce the following analytical formulas for determining the initial values with 
the help of the method of moments (MM) for both VG and NIG distributions, respectively. 

    𝜈 =
3

𝕂(𝑥) − 3
, 𝜎𝑉𝐺 = √

𝕍(𝑥)(𝕂(𝑥) − 3)

3
,   𝜃𝑉𝐺 =

𝕊(𝑥)√𝕍(𝑥)

3
, 𝜇𝑉𝐺 = 𝔼(𝑥) −

𝕊(𝑥)√𝕍(𝑥)

𝕂(𝑥) − 3
, 

 

    𝑘 =
𝕂(𝑥) 

3
− 1,    𝜎𝑁𝐼𝐺 =

√𝕍(𝑥)

(1 + (
𝕊(𝑥)

3𝕂(𝑥)
)

2

𝑘)

, 𝜃𝑁𝐼𝐺 =
𝜎𝑁𝐼𝐺𝕊(𝑥)

3𝕂(𝑥)
, 𝜇𝑁𝐼𝐺 = 𝔼(𝑥) − 𝜃𝑁𝐼𝐺 , 

where 𝔼(𝑥),  𝕍(𝑥), 𝕊(𝑥), and 𝕂(𝑥) correspond to the moments: mean, variance, skewness, and kurtosis, respectively. Here, 
note that we observe significant improvements in log-likelihood convergence after introducing these initial parameters to 
our optimization procedure. The process takes only three iterations to converge both VG and NIG models. 

Now, we may apply an optimization procedure to calibrate the models. The VG, NIG, and BS model parameters illustrate 
numerical illustrations of the VG and NIG processes' accuracy in the European put and call options pricing and underlying 
asset price prediction by comparing their results with the BS and observed option prices. 

Using the NIG and VG option price formulas, we calibrate the models from the daily BIST30 index price series log returns, 
compute European call, and put option prices using data for 05 May 2018 - 05 May 2020. The calibration result of the models 
is given in Table 3. Afterward, we compute the European Call and Put options for all three models using the parameters in 
this table. The root means square error (RMSE) shows that the performance of the NIG model is superior to both VG and BS. 
Also, the RMSE shows that the BS has the worst performance in log return fitting of the BIST30. 

Table 3: The Models’ Parameters Obtained from the Calibration 

Parameter VG NIG BS 

𝜎 0.215342   0.460616   0.391743 

𝜈 0.105535 - - 

𝜅 - 0.348656 - 

𝜃 0.454742  0.084060 - 

RMSE 0.00029766  0.00003343715  0.031066734 

Figure 3 illustrates European Call (right) and Put (left) options prices with various strikes. The figure shows that the pure jump 
models, VG and NIG, are superior to the continuous BS model for European Call and Put options. It is clear that both VG and 
NIG models capture the real option values with the calibrated parameters, summarized in Table 3. It is also important to 
highlight here that even though the VG model's option price estimation is almost identical to the NIG model option price 
estimation, the VG is computationally more expensive than the NIG model’s (The calibration of the VG model took 0.431 
seconds with the error of 0.000298 whereas the former took 0.349 seconds and the latter was 0.0000334 for NIG). Therefore, 
from the computation cost perspective, we can claim that the NIG process is superior to the VG process.   
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Figure 3: BIST30 European Call and Put Option Price Estimations under VG, NIG, and BS Model Assumption 

 

Figure 4 illustrates that both the VG and NIG are successfully capture the volatility smile phenomena of the option pricing 
since plotting the implied volatility surface as considering the option parameters, strike price, and time to maturity is helpful. 
Here, we end up with a two-dimensional curved surface graphed in three dimensions. The implied volatility surface of the 
market (z-axis) of European Call options on the underlying asset is plotted against option prices (y-axis) and time to maturity 
(x-axis). Such a representation describes the absolute value of the implied volatility surface. By adjusting the coordinates, the 
option price is returned by delta yields the relative implied volatility surface. More importantly, the implied volatility surface 
displays both the volatility smile and the volatility term structure simultaneously. Option investors use an implied volatility 
plot to rapidly select the implied volatility surface's shape and specify any region where the plot's slope (and consequently 
relative implied volatilities) was out of line. The figure illustrates the implied volatility surface for all European call options on 
a certain underlying asset price.  In the figure, the z-axis corresponds to percent values of implied volatilities while the x-axes 
and y-axes correspond to the delta of the option and time to maturity. To satisfy the put-call parity, a 20-delta put should be 
equal to the same implied volatility as an 80-delta call. Given this implied volatility surface, we may conclude that the 
underlying asset has both volatility skew (a tilt along the delta axis) and a volatility term structure that indicates an anticipated 
event soon. 

Figure 4: Volatility Surface of VG and NIG Model 

(a) VG process                                                                                                       (b) NIG process 

 

Figure 5 graphs the hedging performance of the models for the options. The first figure (on the left) shows the delta hedging 
coefficients corresponding to the stochastic models and the European call options. In this figure, the values on the x-axis 
show the strike price of a European call option, and values on the y-axis indicate the delta hedging coefficients. Here, the 
critical interpretation is that the NIG and BS models have almost the same hedging coefficient, while the hedging coefficient 
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corresponding to the VG varies from the BS. The second figure (on the right) shows the stochastic models' dynamic hedging 
performance and European call options. The figure reveals that the hedging benefit of the VG process increases as the option 
strike price increases. On the other hand, the NIG model dynamic hedging is almost identical to the BS model. 

Figure 5: Hedging Performance of VG, NIG, and BS Model 

 

 

5. CONCLUSION AND IMPLICATIONS 

The potential hedging benefits of options tied to the BIST30 index provide to investors become even more crucial in emerging 
markets where the cash markets are more vulnerable and prone to extreme volatility levels. Therefore, an efficient derivative 
market becomes even more relevant to domestic and foreign investors. There is sufficient literature on the various dynamics 
of derivatives and their hedging benefits. However, this study's bulk is conducted on emerging markets, particularly the 
BIST30 index and European options tied to this index.  

Our study's significant contribution to the literature is the calibration of the pure jump processes (VG and NIG processes) 
using the characteristic functions, the continuous BS prices for an emerging market, and the computation of European options 
prices in this market. Such a study is the first study that investigates the pure jump processes accuracy for BIST. The calibration 
method can be repeated with other emerging markets by using the derivation we made for the characteristic functions. The 
essential point is the demonstration that the VG and NIG models can be fitted for emerging markets, and option prices in 
these markets can be estimated more adequately compared to the classical BS. We conclude that the NIG and VG processes 
are both attractive and tractable ways to incorporate the phenomenon of option pricing to derive actionable insights and 
investment decisions from the data. Hence, these pure jump models are becoming imperative for investors and portfolio 
managers to tackle predicting option prices and hedging in emerging markets. 
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APPENDIX A: ESTIMATED OPTION PRICES 

Table 4: European Call and Put Option Prices with Various Strike Prices under the VG, NIG, and BS Models Assumptions 

Call Option Prices 

Strike NIG VG BS Market 

1200    169.784463  169.698553  165.800577  174.0 

1250 139.206130 138.710337 134.776382 142.0 

1300 113.717301 113.415851 107.869369  115.0 

1350 93.152041 93.388213 85.032008  93.0 

1400 76.869700 77.422520  66.050554  77.0 

1450 64.051714 64.598618 50.587017  64.0 

1500 53.926980 54.223663 38.226352 54.0 

1550 45.862685 45.772460 28.520774 46.0 

1600 39.371898 38.843751 21.026090 39.0 

1650 34.089866 33.128667 15.327846 34.0 

Put Option Prices 

Strike NIG VG BS Market 

1000 10.207271 10.241480   5.520252  12.0     

1050 15.041657 15.264206 10.168876 15.0 

1100 21.985959 22.326443   17.328258 21.0 

1150 31.837063 32.099611 27.612806 30.0 

1200 45.512746 45.426835 41.528859     43.0 

1250 63.846424 63.350630  59.416676 61.0 

1300 87.269606  86.968157  81.421675 86.0 

1350 115.616358 115.852530 107.496326 115.0 

1400 148.246029 148.798849 137.426883  149.0   
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APPENDIX B: THE PROOF OF PROPOSITIONS 

Proof: Let us define log discounted stock price, 𝑙𝑜𝑔(𝑆(𝑇)𝑒−𝑟𝑇) = 𝑋(𝑇) − 𝜙(−𝑖),  where 𝑋(𝑇) denotes a VG process, 𝜙 is the 

log-characteristic function, and 𝑇 is a finite maturity (𝑇 < ∞) as usual. Then, under the risk-neutral probability ℚ𝑆, we can 
obtain the characteristic function of log-discounted stock price, 

 𝔼𝑆(𝑒𝑖𝑢𝑋(𝑇)) =  𝑆(0)𝔼 [
𝑆(𝑇)

𝑆(0)𝑒𝑟𝑇
𝑒𝑖𝑢𝑋(𝑇)] = 𝔼[𝑒𝑋(𝑇)(𝑖𝑢+1)]𝑒−𝜙(−𝑖)𝑇 = 𝔼[𝑒𝑋(𝑇)𝑖(𝑢−𝑖)]𝑒−𝜙(−𝑖)𝑇 . 

Now, by defining 𝑢 − 𝑖 = 𝑣 we obtain 

 𝔼(𝑒𝑖𝑣𝑋(𝑇))𝑒−𝜙(−𝑖)𝑇 =
Φ(−𝑖)

Φ(𝜈)
=

1−𝜃𝜈−0.5𝜎2𝜈

1−𝑖(𝑢−𝑖)𝜃𝜈+0.5(𝑢−𝑖)^2𝜎2𝜈
=

1−𝜃𝜈−0.5𝜎2𝜈

1−𝜃𝜈−0.5𝜎2𝜈(1−𝑖𝑢(𝜎2+𝜃)
𝜈

1−𝜃𝜈−0.5𝜎2𝜈
+0.5𝜎2𝑢2 𝜈

1−𝜃𝜈−0.5𝜎2𝜈}
)
 . 

At this stage, again by defining 𝜅 = (1 − 𝜃𝜈 − 0.5𝜎2𝜈) we end up with the following four results  

Φ(−𝑖)

Φ(𝜈)
= (

𝜅

𝜅 (1 − 𝑖𝑢(𝜎2 + 𝜃)
𝜈
𝜅

+ 0.5(𝜎 𝑢)2 𝜈
𝜅

)
)

𝑇
𝜈

, 

Φ𝑋
𝑆 (𝑢, 𝑇) = (

1

1 − 𝑖𝑢𝜃𝑠𝜈𝑠
+ 0.5(𝜎 𝑢)2𝜈𝑠 

)

𝑇
𝜈

,        (1) 

𝜃𝑠 = 𝜃 + 𝜎2, 𝜈𝑠 =
𝜈

𝜅
. 

To derive the VG process’s probability density function (pdf) of under the ℚ𝑆 measure, (1) characteristic function under the 

ℚ𝑆 is needed. After it is derived, we obtain new parameters under the ℚ𝑆  measure. This could be obtained using density as 
well. However, the characteristic function is more straightforward. Then one can first represent the density under this form, 

𝑔𝑆(𝑥, 𝜃𝑆 , 𝑘, 𝜎, 𝜈𝑆, 𝜈, 𝑇) = ∫
1

𝜎√2𝜋𝛾

∞

0

𝑒𝑥𝑝 (−0.5 (
𝑥 − 𝜃𝑆𝛾 

𝜎√𝛾
)

2

)
𝑒

−
𝛾

𝜈𝑆𝛾
𝑇
𝜈

−1𝜈𝑆

−
𝑇
𝜈

Γ(
𝑇
𝜈

)
𝑑𝛾. 

Then, using equation 3.471.9 from Zwillinger and Jeffrey (2007), one can further write the density, 

𝑔𝑆(𝑥, 𝜃𝑆 , 𝑘, 𝜎, 𝜈, 𝜈𝑆) =
2 exp (

𝜃𝑆𝑥
𝜎2 )

Γ (
𝑇
𝜈

) √2𝜋𝜈
𝑇
𝜈

−1

(
𝑥2

(
2𝜎2

𝜈𝑆
+ 𝜃𝑆

2)
)

𝑇
2𝜈

−0.25

×

𝐾𝑇
𝜈

−0.5
(

𝑥2

𝜎2 (
2𝜎2

𝜈𝑆
+ 𝜃𝑆

2))

√𝑥2 +
𝜎2𝑇2

𝜈

 . 

Under the risk-neutral measure ℚ𝑆, the result coincides with the following density function that was primarily introduced by 
Tankov (2003) 

𝑔(𝑥, 𝜃, 𝑘, 𝜎, 𝜈) =
2 exp (

𝜃𝑥
𝜎2)

Γ (
𝑇
𝜈

) √2𝜋𝜈
𝑇
𝜈

−1

(
𝑥2

(
2𝜎2

𝜈
+ 𝜃2)

)

𝑇
2𝜈

−0.25

×

𝐾𝑇
𝜈

−0.5
(
𝑥2

𝜎2 (
2𝜎2

𝜈
+ 𝜃2))

√𝑥2 +
𝜎2𝑇2

𝑘

 . □ 

Proof: Likewise, we conduct derivations for NIG model for similar arguments; let us define log discounted stock price, 
𝑙𝑜𝑔(𝑆(𝑇)𝑒−𝑟𝑇) = 𝑌(𝑇) − 𝜙(−𝑖) where 𝑌(𝑇) is a NIG process as usual. Then, under the risk-neutral probability ℚ𝑆, we can 
obtain the characteristic function of log-discounted stock price, 

𝔼𝑆(𝑒𝑖𝑢𝑋(𝑇)) = 𝑆(0)𝔼[
𝑆(𝑇)

𝑆(0)𝑒𝑟𝑇  
𝑒𝑖𝑢𝑌(𝑇)] = 𝔼[𝑒𝑌(𝑇)(𝑖𝑢+1)]𝑒−𝜙(−𝑖)𝑇 = 𝔼[𝑒𝑌(𝑇)𝑖(𝑢−𝑖)]𝑒−𝜙(−𝑖)𝑇 . 

Given the characteristic function of NIG and defining 𝑣 = 𝑢 − 𝑖 we have 

ΦNIG(𝑣)

Φ𝑁𝐼𝐺(−𝑖)
= (√

1 + 𝑢2𝜎2 𝑘 − 2𝑢𝑖𝜎2𝑘 − 2𝑖𝑢𝜃𝑘

1 − 𝜎2𝑘 − 2𝜃𝑘
) = (√

1 + 𝑢2𝜎2𝑘 − 2𝑢𝑖𝑘𝜎2 + 𝜃)

1 − 𝜎2𝑘 − 2𝜃 𝑘
). 
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Now, by letting 𝜔 =
𝑘

{1−𝜎2 𝑘−2𝜃 𝑘
 and 𝜃𝑆 = 𝜃 + 𝜎2 and following some algebraic manipulations, we finally obtain the 

characteristic function under the risk-neutral probability, ℚ𝑆 , measure as follows 

    Φ𝑆(𝑢, 𝑡) =
𝑡

√𝑘𝜔
(1 − √1 + 𝑢2𝜎2𝜔 − 2𝑢𝑖𝜃𝑆𝜔).              (2) 

To derive the probability distribution function (pdf) of NIG process under ℚ𝑆 measure, (2) (characteristic function under ℚ𝑆) 
is needed. Using 3.471.9 from Zwillinger and Jeffrey (2007), we end up with the following density, 

𝑓𝑆(𝑥, 𝜃, 𝑘, 𝜎) =
𝑇

𝜋
𝑒𝑥𝑝 (

𝑇

√𝑘𝜔
+

𝜃𝑥

𝜎2) ×
𝐾1(√𝜃2 +

𝜎2

𝑘
1

𝜎2
√𝑥2 +

𝑇2

𝜎2𝑘
)

√𝑥2 +
𝜎2𝑇2

𝑘

 

under risk-neutral probability measure ℚ, we used the following density function given by Tankov (2003) 

𝑓(𝑥, 𝜃, 𝑘, 𝜎) =
𝑇

𝜋
𝑒𝑥𝑝 (

𝑇

√𝑘
+

𝜃𝑥

𝜎2
) ×

𝐾1(√𝜃2 +
𝜎2

𝑘
1

𝜎2
√𝑥2 +

𝑇2

𝜎2𝑘
)

√𝑥2 +
𝜎2𝑇2

𝑘

 

Using these densities, we prefer to calculate CDF by numerical integration. Then, it is convenient to arrive following the BS 
type option price formula, 

𝐶(𝑆(𝑡), 𝐾, 𝑟, 𝑇 − 𝑡, 𝜃, 𝜃𝑆 , 𝑘, 𝜎) = 𝑆(𝑡)𝐹𝑆(𝑥, 𝜃𝑆 , 𝑘, 𝜎) − 𝐾𝑒−𝑟(𝑇−𝑡)𝐹(𝑥, 𝜃, 𝑘, 𝜎), 

where 𝑥 = 𝑙𝑜𝑔(
𝑆(𝑡)

𝐾
+ (𝑟 − 𝜙(−𝑖))(𝑇 − 𝑡). □ 


